DELPHI

Development Update on Delphi's Solid Oxide Fuel Cell Systems

Steven Shaffer Chief Engineer – Fuel Cell Development

San Antonio, TX 2007 SECA Annual Review Meeting

Acknowledgements

Battelle @ Pacific Northwest National Laboratory ...delivering breakthrough science and technology

Research Center

Solid Oxide Fuel Cell Market Opportunity

European micro –CHP & CHCP Natural Gas

US Stationary – APU & CHP

Natural Gas, LPG

Commercial Power

Natural Gas

FutureGen Powerplant Coal Gas

Truck Cabs are Getting More Advanced

Margaret Sullivan, PACCAR <u>Trucks: Truck of the Future</u> 2003 Conference Proceedings Fourth Annual SECA Meeting - Seattle, WA April 15-16, 2003

Anti-idling Regulations - State & Local

http://www.epa.gov/smartway

Internal Combustion Engine APUs (Diesel)

6

SOFC Subsystem Development Stack

Generation 3 Stack Key Features

- Key Stack characteristics
 - Cassette repeating unit configuration
 - High volume manufacturable processes (stamping, laser-welding, etc)
 - Integrated manifold and compact load frame
 - Low mass and volume

Generation 3 (30 cell), 9 Kg, 2.5 L

Generation 3 30-Cell Stack Data

Data below shows a typical 30-cell Generation 3.2 stack tested in the stack laboratory
Produced greater than 450 mW/cm² at 0.8V per cell with 48.5% H₂, 3% H₂O, rest N₂

Cassette to Cassette Variation in a 30-Cell Stack

- Consistent performance between cassettes in a Gen 3.2 30-cell stack
 - 570 mA/cm², 48.5% H₂, 3% H₂O, rest N₂
 - Maximum voltage difference is 0.04 Volts

5-cell Stack on Durability Test

• Data from 5-cell stack tested for continuous durability

- 35% H_2 , 30% H_2O , rest N_2 , 50% fuel utilization
- 570 mA/cm²
- No degradation in 1300 hours test continuing

-11

5-cell Stack on Simulated Diesel Reformate (including 2.5 ppmv H_2S) – 3500 Hours

- Data from 5-cell stack being tested on simulated diesel reformate at 750°C with 2.5 ppmv H₂S
 - 28% H₂, 30% CO, 6% H₂O, 2.5 ppmv H₂S
 - Initial H₂S added at constant current density of 570 mA/cm², 26% drop in performance observed
 - Current density re-set at 190 mA/cm² at the nominal operating point
 - No secondary degradation

Key Cell Scale-up Developments

- Increased tape cast width capability of TCF tape caster
- Developed machine specifications for higher volume cell production processing
- Developed timing plan for progression to higher volume cell production
- Successfully demonstrated capability for fabricating larger footprint bilayers (up to 350 cm2 active area)
- Added larger screen printer capable of printing very large cells

Scale-Up of Cell Active Area

SOFC Subsystem Development Reformer

Fuel Reformer Development

- Delphi is developing reforming technology for Natural Gas, Gasoline and Diesel/JP-8 for SOFC applications
- Two main designs are being developed:
 - CPOx Reformer
 - » Moderate efficiency
 - » Simplicity of design
 - » Not recycle capable
 - Recycle Based (Endothermic) Reformer
 - » High efficiency
 - Use of water in anode tailgas to accommodate steam reforming
 - » Recycle capable

CPOx Reformer (productive concept)

Tubular Endothermic Fuel Reformer

Endothermic Reformer on Test Stand

SOFC Subsystem Development Balance of Plant

Blowers/Pumps

Process Air Module (PAM)

Anode Tailgas Recycle Pump
DELPHI

High Temperature Compact Heat Exchangers

DELPHI

Cathode Air Heat Exchanger

BOP High Temperature Seal – Thermal cycling

• Background :

- High temperature seals between Stack base manifold, Heat exchanger and Reformer to Integrated Component Manifold.
- 50 Thermal Cycles (25C to 900C)
- Leak rates < .01 sccm; Helium @ 2psi

Chromium Vaporization Testing

- A test method has been established to measure the rate of chromium vaporization
 - Materials are being tested for the rate of chromium vaporization
 - Coatings for materials and other methods for mitigating chromium vaporization are being evaluated.
 - Test methodology also applied to SOFC System and data collected during system operation

SOFC System Integration

Delphi Systems Developed During Phase I

SPU 1 SOFC System (NG Stationary & Diesel APU)

SOFC System Mechanization-CPOx

28

SOFC System Mechanization-Anode Tail Gas Recycle

Delphi SOFC System Development Platforms

SPU 1 System Performance with Improved Stack Temperature Profile

Natural Gas (NG) Desulfurization

- Prototype desulfurizers provided by supplier
- Successfully demonstrated over 1000 hrs on system test
 - Consists of a combo-sorbent bed

Sulfur species present in RGE NG at Delphi SOFC Test Facility

Suldur species	ppmv
Hydrogen sulfide	0.355
Carbonyl sulfide	0.065
Methyl Mercaptan	0.125
Ethyl Mercaptan	0.048
Dimethyl sulfide	0.047
Iso-Propyl Mercaptan	0.571
T-Butyl Mercaptan	2.163
N-Propyl Mercaptan	0.083
Butyl Mercaptan	0.000
Thiophene	0.037
Total sulfur	3.494

Set 00 System Performance 1000 Hour Stability on Natural Gas (CPOx)

DELPHI

Thermal Cycling of Stacks

- 10-cell stack thermally cycled in a furnace 16 times
 - Room temperature to operating temperature in ~90 mins _
 - No loss of power -16 cycles _

SPU 1 System Performance Typical Thermal Cycle

SPU 1 System Performance 45 Thermal Cycles Completed

Phase II Next Steps:

Next Steps: Design of New Diesel APU Platform

Next Steps: Phase II Performance Testing of SPU 2 System

High Efficiency Coal-Based SOFC - Gas Turbine Hybrid System

System Analysis and Conceptual Stack Design

Provided to Delphi by UTRC

SOFC-Gas Turbine Hybrid Power Plant

150 MW system concept reaches efficiencies >53% (HHV) w/ CO₂ capture

- System efficiency include CO₂ capture and compression to sequestration-ready pipeline conditions
- System efficiency approaches 60% without counting CO₂ capture and compression
- System based on pressurized SOFC integrated with a Twin Pack of UTC Pratt & Whitney's FT8-3 Gas Turbines
- Operate on gasified coal composition as specified by NETL
- Modify existing FT8-3 engine is more cost effective than beginning a new engine design program. Design changes can result in 15% reduction in FT8 capital cost

SOFC with Bottoming Rankine Cycle Power Plant

1 MW demo system concept reaches efficiency >43% (HHV) w/ CO₂ capture

- System efficiency include CO₂ capture and compression to sequestration-ready pipeline conditions
- System efficiency approaches 47% without counting CO₂ capture and compression
- System based on **ambient** SOFC integrated with a bottoming Organic Rankine Cycle
- \sim 35 stacks in the system and \sim 300 cells per stack
- Required cell power density in the range of 0.27 -0.3 W/cm²

SOFC Stack Module Concept

Annular stack module design

- 10 MW module array with single supply / exhaust lines
- Module power 1MW
- Module diameter ~250 cm
- Stack power 50 kW
- Cell active area 360 cm²
- Power density 0.45 W/cm²
- ~280 cells per stack

SOFC Stack Module Concept

Linear stack module design

Summary of Phase II Progress:

7/24/2007 0:00

Target Metric		DOE/SECA Ph II (CONTRACT)	Current Status	
Target Date		4Q 2008	3Q 2007	
Fuel		Nat Gas	Nat Gas	
Net Rated Power	kW	3-10	3.4	SPU 1
Fuel to Electric Efficiency (Peak)	%	40%	38%	SPU 1
Cost	\$/kW	\$600	\$670	Projected SPU 2
Cycle Durability	cycles	50	36	Completed SPU 1
Operation Life	hrs	1500*	1000	Set 00
Degradation Rate	%/500 hrs	1.0%	0.84%	Set 00

