Anode and Cathode Blower Systems for SOFC

Mark C. Johnson

Phoenix Analysis & Design Technologies

2007 SECA Conference 08/09/07

Agenda

- PADT Background
- Summary of HARB program
- Transition from DG to FutureGen
- HARB II for FutureGen
- Component Development
- New blower: Small Multi-stage (SMS) blower
- Conclusions

Who is PADT?

Incorporated in March 1994

- Specialty blowers
- Simulation services
- Rapid prototyping
- Medical instruments
- Semiconductor equipment

-Facilities

- 24,000 ft² at ASU Research Park in Tempe, Arizona
- 60% Office
- 40% Shop & Lab

People

- 50 Employees

PADT Fuel Cell Programs

1998-2000

- 5 Roots Cathode blowers delivered
- 6 Axial Cathode blowers delivered

2001-2002

- VGEN, TURBOMIX, TRILOBE designed
- 18 blowers delivered

2003

28 blowers delivered

2004

- New HRB, SECA, TURBORAD developed
- 60 blowers delivered

2005

- HARB developed
- 120 blowers delivered

2006

- MINIRAD developed
- 150 blowers delivered

Summary of HARB Development

- Hot Anode Recycle Blower (HARB)
- HARB I POC built and tested
 - Thermal segregation proven
 - Tested to ~ 600 C
 - Low efficiency, ~ 25%
- Transition to FutureGen
 - Program slowed down
 - Specifications reassessed
- Component development
 - BLDC Motor
 - Bearings
 - Pumphead evaluation
- HARB II Designed for FutureGen

FutureGen Approach: HARB II

- Consulted with most SOFC developers
 - Support from DOE
- Design Drivers for FutureGen
 - Robustness
 - Cost Control
 - High performance
 - Flexible
- Approach for HARB II
 - 700 C inlet
 - Scalable, serves 50 kWe 500 kWe
 - Low cost mfg processes
 - Moderate RPM 10k 20k RPM
 - 18" long x 10" dia.
 - Good efficiency ~ 55%, DC to fluid
- Patents being evaluated
 - Pumphead, bearings, cooling

HARB II: Risk Assessment

- Motor exposure to High Voltage/Temperature/Moisture
 - Potting with silicone/epoxies/urethanes help some
 - Canned motor is best solution
- Motor Hall sensor failure
 - Work towards sensorless control
 - Keep sensors out of process flow
- Condensation in bearing/ motor cavity
 - Anode gases are ~ 50% mole fraction H₂O
 - Bearing/motor cavity may be below dew point
- Bearing Failure
 - Continual progress is being made (e.g. SiN balls)
 - Proper mounting and lubrication
- Impeller Creep
 - Control temps and stress
- Pumphead Corrosion, Chromium contamination
- Feedback: High temps add more risk

HARB II: Cost Assessment

- Bottom up cost estimate complete for HARB II
 - Based on quotes, scales, and estimates
- Feedback: Cost Drivers
 - Pressure Rise drives cost, higher stage count
 - Also higher power levels drive motor/controller cost up
 - Big benefit if inlet temp is below 500C. Enable SS solutions

SUMMARY OF HARDWARE COSTS	PERCENT
Cool static component costs	12%
Cool rotating component costs	11%
Hot static component costs	31%
Hot rotating component costs	14%
Motor/Conroller costs	32%

HARB II: BLDC Canned Motor

Motor now being tested in PEM based

HRB system

- Cost Control
 - Keep RPM down
 - Avoid nickel-iron laminations
 - Use silicon steel laminations
 - Injection moldable can designs
- Testing in fuel cell environment
 - High temperature, Water, Hydrogen, Voltage
 - Pressure cycling for 38368 cycles over 632 hours
- Thermal Shock Testing
 - -40 C to 140 C, 300 cycles
- Overpressure to ~ 8 Bar with no issues

HARB II: Motor Can Testing

Fuel Cell Chamber

	HIPPIES Test Initial Test		HIPPIES Test 304 hrs, 14199		HIPPIES Test 632 hrs, 38368		est	
							8368	
	2/9/2007			2/22/2007			3/9/2007	
	Measured	Measured		Measured	Measured		Measured	Measured
	Leak Rate	Leak Rate		Leak Rate	Leak Rate		Leak Rate	Leak Rate
Material	(cc/sec)	(cc/hr)		(cc/sec)	(cc/hr)		(cc/sec)	(cc/hr)
Ultem								ON
30% filled	1.50E-05	0.054		2.40E-05	0.086		2.00E-05	0.072
Ultem								2
(unfilled)	1.50E-05	0.054		3.10E-05	0.112		2.00E-05	0.072
Peek								
(unfilled)	1.50E-04	0.54		1.20E-05	0.043		7.40E-06	0.027

THERMAL SHOCK

	Thermal S	hock	Thermal S	hock
	Initial Test	t	300 cycles	
	2/13/2007		4/9/2007	
	Measured	Measured	Measured	Measured
	Leak Rate	Leak Rate	Leak Rate	Leak Rate
Material	(cc/sec)	(cc/hr)	(cc/sec)	(cc/hr)
		##		
Ultem				
30% filled	1.50E-05	0.054	1.80E-05	0.065
Ultem				
(unfilled)	1.50E-05	0.054	2.20E-05	0.079
Peek				
(unfilled)	6.75E-05	0.243	8.20E-06	0.03

2007 SECA Conference 08/09/07

HARB II: Bearing Development

- 2 Bearing Rigs built
 - Running non-stop
- Accelerated life testing
 - Need 40000 hrs of life
 - 2 year program
- Working with industry veteran
 - 40 years of experience
- An additional 2 rigs now being built
 - 4 rigs total

Impeller Selection

- 4 Configurations considered
 - Cast regenerative
 - Cast single stage centrifugal
 - Single stage sheet metal centrifugal
 - Multi-stage sheet metal centrifugal
- Regenerative is inefficient
 - Axial clearance is critical
 - Temperatures, transients
- Cast approach slow/expensive
 - Got 2 Quotations(Howmet, Miller)
 - Casting cost over \$2000 in low volume
 - Post machining greater than \$2000
 - Long lead times, ~ 6 months

Impeller Selection

- Single stage sheet has high stresses
 - High tip speed required to make DP
 - Bore stresses exceed 30 ksi
 - Haynes 230 will have limited life

Multi-Stage Impeller Selected

- Multi-stage Impeller offers solution
 - Tip speed way down.
 Quiet.
 - Bore stresses lower than
 10 ksi
 - Flexible: Stage count easy to change
 - Very low cost
- Efficiency proven on MINIRAD program
 - ~ 43% overall efficiency
 - Expect ~55% for HARB II
 - Patent under evaluation

New Developments

- PADT has chosen to split program
 - HARB II for FutureGen
 - Small Multi-Stage (SMS) blower for DG
 - Both blowers will use same pumphead technology
- HARB II now in final design
 - Hardware in ~ 6 months
- SMS Blower
 - Will provide anode recycle
 - $\sim 200C$
 - Same multi-stage approach
 - Same motor approach
 - Design restricted to very low cost mfg processes
 - Flexible

HARB II (18" long x 10" dia.)

SMS (9" long x 6" dia.)

2007 SECA Conference 08/09/07

Phoenix Analysis & Design Technologies

Acknowledgements

- SOFC developers
- NETL support
 - Chuck Alsup
 - Travis Schultz
 - Heather Quedenfeld
- UCI
 - Jack Brouwer
- Dawnbreaker Commercialization Assistance
 - Jenny Servo, Bob Larsen, Patty Heckman
- PADT Blower development team

