# Advanced Interconnect and Interconnect/Electrode Interfaces Development at PNNL

Z.G. Yang, G.G. Xia, G.D. Maupin, Z.M. Nie, X.S. Li, J. Templeton, J.W. Stevenson, P. Singh

Pacific Northwest National Laboratory Richland, WA 99352

8<sup>th</sup> Annual SECA Workshop and Peer Review San Antonio, TX, August 6-9, 2007



#### **Objectives and Approach**

#### Objectives

- Develop cost-effective, optimized materials and fabrication approaches for SOFC interconnect and interconnect/electrode interface (i.e. contacts) applications
- Identify and understand degradation processes in interconnects and interconnect/electrode interfaces

#### Approach

- Materials and process development
  - Cost-effective oxidation resistant alloys
  - Surface modification via coatings
  - Interconnect/electrode contact materials
- Materials evaluation and degradation study
  - Screening study of alloys and ceramics for interconnect and interface applications, respectively
  - Investigation and understanding of oxidation/corrosion and interfacial reactions and stability under SOFC operating conditions.



#### **Accomplishments in FY07**

- Investigation and development of cost-effective ferritic stainless steels (In collaboration with Allegheny Ludlum Corp.)
- Systematically investigated 430 O
- Identified and evaluated 439 and 441, two modified versions of 430
- Applied protection layers onto candidate alloys and evaluated their performance O
- Development of protection layers and fabrication approaches
- Completed long-term thermal stability and electrical performance evaluation 0
- Initiated optimization of materials and fabrication for further cost-reduction
- Investigation and development of contact layers between metallic interconnects and electrodes
- Screening-studied more than a dozen materials systems via different fabrication 0 approaches
- Identified two promising material groups and three approaches 0
- Evaluated electrical performance of selected candidates 0



### Investigation and Development of Novel Interconnect Alloys

- Goal: Identify/develop a novel ferritic stainless steel (FSS) with an optimized alloy chemistry that offers comparable or improved performance relative to the state-of-the-art compositions such as Crofer 22 APU, while being more cost-effective.
- Approach: To achieve the desired alloy chemistry or control residual alloy elements of Si, C, N, etc., via alloying, instead of extra refining that adds cost.

#### Accomplishments

- Investigated properties of 430 relevant to interconnect applications
- Identified potential candidates 441 and 439, two modified versions of 430
- Evaluated their properties relative to interconnect requirements
- Surface-modified the potential candidates with spinel protection layers and investigated their stability and electrical performance



**S3** Staff, 7/30/2007

#### **Oxidation Kinetics of Bare and Coated 430**

#### Why 430: cost reduction

- 430: 17% Cr, via conventional melting – more cost-effective
- Crofer 22 APU: 23%Cr, extra refining (e.g. vacuum refining) for cleaning residual elements, Si, C, N, etc.
  - ☐ Bare 430 demonstrated a fairly low scale growth rate at early stages
  - Leveling off of the weight gain indicated likely spallation
  - $\square$  Mn<sub>1.5</sub>Co<sub>1.5</sub>O<sub>4</sub> (MC) spinel protection layers drastically mitigated the scale growth beneath the coating





#### **Surface Stability of 430**

- Unlike bare 430, no spallation observed on MC 430
- ☐ Fe transported through the coating, BUT not Cr
- $\square$  No solubility of SiO<sub>2</sub> in Cr<sub>2</sub>O<sub>3</sub>
- Formation of continuous, insulating SiO<sub>2</sub> layer b/w scale and Fe-Cr substrate





Bare 430

MC coated 430

1,200 hrs, air, 800°C



#### **Long-Term Performance of MC Coated430**

- The formation of a continuous insulating SiO<sub>2</sub> layer at the scale/metal interface led to a high ASR.
- The ASR became unstable after about 4,000 hours, likely due to detachment of scale from the metal substrate.



#### MC protection layer||scale||Fe-Cr





#### Metallurgy of 441 and 439

| Designation   | Cr   | Mn      | Ni    | С     | Al    | Si   | P     | S      | Ti   | Nb   | Re        |
|---------------|------|---------|-------|-------|-------|------|-------|--------|------|------|-----------|
| T-441         | 17.8 | 0.33    | 0.20  | 0.010 | 0.045 | 0.47 | 0.024 | 0.001  | 0.18 | 0.46 |           |
| 439 HP        | 17.5 | 0.44    | 0.20  | 0.012 | 0.040 | 0.73 | 0.016 | 0.0004 | 0.41 |      |           |
| AL 430        | 17.0 | ≤1.0    | ≤0.75 | ≤0.12 |       | ≤1.0 |       |        |      |      |           |
| Crofer 22 APU | 23.0 | 0.4-0.8 |       | 0.030 | ≤0.50 | ≤.50 | 0.020 | 0.050  | ≤0.2 |      | 0.04-0.20 |

- Fractional % of Ti and Ti/Nb were added into Fe-17%Cr substrate for 439 and 441, respectively
- Nb leads to laves phase (Fe<sub>2</sub>Nb) precipitation along grain boundaries that significantly improves high temperature strength and creep resistance of the Fe-Cr substrate (double yield strength at 800°C)
- As strong carbide/nitride formation elements, Ti and Nd lower interstitial elements C and N in the substrate
- Can Nb (or Ti) tie up Si to prevent SiO<sub>2</sub> layer?





#### **Electrical Evaluation of 441 and 439**



#### **Effects of Minor Alloying Elements in 441**

- ☐ There was Si buildup or silica layer formation between scale/metal interface, in spite of about 0.5% residual Si in the metal substrate
- □ Nb tied up Si, preventing formation SiO<sub>2</sub> layer at the scale/metal interface







#### **Scale Structure and Compositions of 441**

- O Scale grown on 441 is mainly comprised of (Mn,Cr)<sub>3</sub>O<sub>4</sub> and Cr<sub>2</sub>O<sub>3</sub>, similar to that of Crofer 22 APU
- Negligible Fe or iron oxides in the scale, different from that of 430



300 hours, 800°C, air





#### **Kinetics of Scale Growth on 441**

#### Time (hours)



Scale growth rate comparable to Crofer 22
APU, but with inferior scale adherence

(Local spallation found occasionally after extensive oxidation)

2~3 times lower for MC coated specimens; no spallation



After 900 hours

#### **Electrical Performance of Surface-Modified 441**

- Mn<sub>1.5</sub>Co<sub>1.5</sub>O<sub>4</sub> spinel protection layers minimized area specific electrical resistance (ASR)
- ASR of coated sample increased little, if any, over the course of the test



Cathode: LSM

Contact: LSM

IC: bare 441 or

MC coated 441

Current: 500 mA.cm<sup>-2</sup>

#### **SEM Cross-Sections of ASR Samples**

- Improved surface stability: no spallation or detachment observed
- No penetration of Cr through the protection layer, though there appeared Fe migration into the coating (similar to 430).

#### MC coated 441



#### **Summary**

- 441 exhibited promising alloy chemistry: addition of a small amount of Nb helps avoid formation of a continuous silica layer and promote desirable second phase precipitation, thus leading to a lower scale resistance and higher mechanical strength.
- The alloying approach eliminates the costly refining process that is currently employed for making Crofer 22 APU and other super-grade ferritic stainless steels for IC applications.
- Protection layers are required to further improve alloy surface stability and electrical performance, and seal off Cr.

#### **Future Work**

- Evaluate long-term thermal stability and electrical performance of bare and surface modified 441
- ☐ Further understand the alloy chemistry via advanced diagnostic study
- Investigate and optimize bulk alloy chemistry and surface modification for satisfactory long-term stability and performance. (In collaboration with Allegheny Ludlum Corp.)



#### **Protection Layer Development and Investigation**

 Goal: develop cost-effective, optimized protection layers that are effective barriers to both oxygen inward and chromium outward diffusion, while being stable over lifetime of SOFC operation.

#### Previous work:

- Developed spinel protection layers with a nominal composition Mn<sub>1.5</sub>Co<sub>1.5</sub>O<sub>4</sub>
- Systematically studied (Mn,Co)<sub>3</sub>O<sub>4</sub> spinel materials
- Developed slurry-based approaches for fabrication of the spinel protection layers
- Evaluated kinetics of scale growth, stability under thermal cycling, electrical and electrochemical performance, chromia volatility, etc., of coated Crofer 22 APU
- Completed one year thermal stability evaluation of coated Crofer 22 APU

#### Recent Accomplishments:

- Completed half year electrical evaluation of MC coated Crofer 22 APU and 430 (with LSM cathode & contact paste)
- Investigated suitability and performance of the spinel protection layers on 430 and 441 (see previous slides)
- Started developing alternative fabrication approaches, e.g. electrochemical deposition



#### **Summary and Future Work**

- Spinel protection layers with a nominal composition Mn<sub>1.5</sub>Co<sub>1.5</sub>O<sub>4</sub> and fabricated with slurry coating approaches are an effective oxygen inward and chromium outward diffusion barrier, mitigating scale growth and sealing off chromium
- Interconnect FSS, e.g. Crofer 22 APU, with the spinel protection layers demonstrated excellent long-term stability and electrical performance
- Developing cost-effective approaches compatible with mass production and practical shapes of interconnect
  - Electroplating, electrophoresis, etc., in addition to spray process.

#### Contact Layer Investigation and Development

Goal: develop cost-effective, optimized contact layers between metallic interconnects and electrodes.



#### **Functions**

- Promote electrical contact
- Facilitate stack assembling
- Act as a potential buffer zone to prevent unwanted reactions and transport, such as Cr volatility

#### Challenges

- A metallurgical bond can be built between a metallic interconnect and Ni-YSZ anode, providing a low resistance path for electrons.
- Oxide-metal interfaces are present between metallic interconnects and cathodes, increasing electrical resistance and thus causing power loss.

#### **Previous Work and Current Strategy**

#### Previous work and accomplishments:

- Evaluated metals and varied conductive oxides, including LSM, LSCo, LSCM, MC, etc.
- Investigated interfacial interactions
- Initiated enhanced sintering approaches for LSM and MC

# 20kU X3,000 5mm 07s199c

Spinel protection layer

LSM

#### Challenges of current materials

- □ Precious metals demonstrate suitable properties, but too expensive (Ag, a possible exception).
- □ Conductive oxides of high sintering activity, e.g. superconductors, usually too reactive, negatively affecting the stack and interface stability
- □ Conductive oxides, e.g. LSM, that are typically used as cathode compositions demonstrated good compatibility, but need improvement in sintering activity at 800-900°C and thus better electrical contact

Approach: improve sintering activity via reaction sintering, addition of sintering agents or chemical modification



## Fabrication of Contact Layers via Reaction Sintering

Paste of metals and/or oxides mixture



Conductive oxide contact layer

#### Reactions assisted sintering





Without sintering



After reaction sintering

#### **Contac Layers via Adding Sintering Agents**

- Among studied, CuO and Bi<sub>2</sub>O<sub>3</sub> more effective for LSM.
- To be effective needs 4~5%





#### **Electrical Performance and Stability Evaluation**



#### **Enhanced Sintering via Chemical Modifications**





#### <u>Summary</u>

- Reaction sintering appears to be a promising approach to fabricate contact layers between perovskite cathodes and metallic interconnects.
- Addition of sintering aids and chemistry modifications also help improve sintering activity of conductive oxides.

#### **Future work**

- Continue to search and optimize contact materials and processing approaches
- Systematically evaluate candidate systems: dilatometry, IRU (ASR), SEM, XRD.
- Evaluate long term electrical performance and interface stability under isothermal and thermal cycling



#### **Acknowledgements**

- ➤ The work summarized in this paper was funded under the U.S. Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program.
- ► The authors wish to thank the SECA management team at NETL for their helpful discussions regarding this work.
- Metallographic preparation and SEM: Jim Coleman, Shelley Carlson, Nat Saenz

