ADVANCES IN ANODE AND CATHODE BLOWERS

8th Annual SECA Workshop San Antonio, TX

Sponsor: Department of Energy

Presented by: Dr. Giri Agrawal (Principal Investigator)

R&D Dynamics Corporation

Date: August 9, 2007

OUR BUSINESS

Design, Develop and Production Manufacture Oil-Free, Efficient, and Affordable High-Speed Turbomachinery

R&D Dynamics, Bloomfield, CT

Background

- Started in 1990
- ❖ 23,000 sq. ft. space
- 45 employees
- ❖ 50% development programs
- ❖ 50% production programs
- Quality system approved by FAA
- ❖ ISO 9001:2000 / AS9100 to be certified by 09/07

Experience

- Fuel Cell Blowers
- Motor driven gas compressors
- Turboalternators
- Turboexpanders for air separation plants
- Hydrogen turboexpander
- Refrigerant centrifugal compressors
- High temperature turbochargers

Fuel Cell Blower Customers

- **SECA Members**
- General Motors
- ***** UTC Fuel Cells
- ***** Ballard Power Systems
- Global Fuel Cell OEM's

Blower Benchmark Tests Accomplished

- * Recent testing by fuel cell OEM demonstrated...
 - ✓ Hydrodynamic foil bearings to be suitable and robust technology for transportation fuel cell air supply systems
 - **✓** Blower passed following tests:
 - 1. Endurance with cycle >2000 hours
 - **2.** Start/stop >10,800 cycles
 - 3. Shaker
 - 4. Before and after performance

Anode Gas Recycle Blower Advancements

Grant No: DE-FG02-05ER84210

Summary of Advancements

- Designed AGRB meeting all SECA members requirements.
- High speed motor has been designed and fabricated.
- Parts are manufactured and machine assembled.
- * Test plan laid out and all the necessary instrumentation procured.
- Cost reduction worked on in parallel.
- ❖Blower will be tested in 2nd year of funding.

Specifications

▲ Inlet Gas Temperature 600 to 850 °C

▲ Inlet Pressure 14.69 psia

Arr Pressure Rise 4 to 10 inches of H_2O

▲ Required Flow 100 SLPM

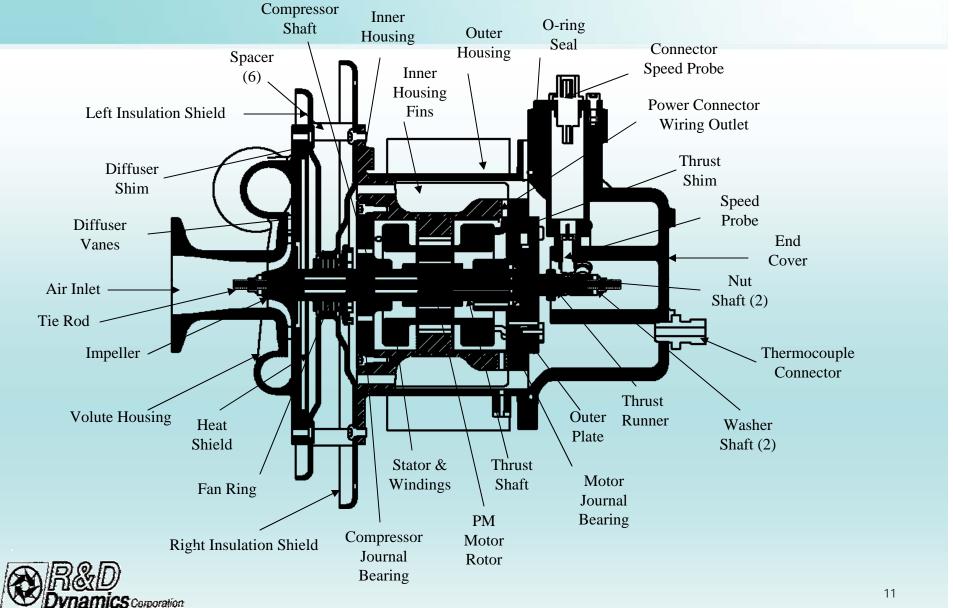
▲ Overall Efficiency >40%

→ Design Life >40,000 hrs

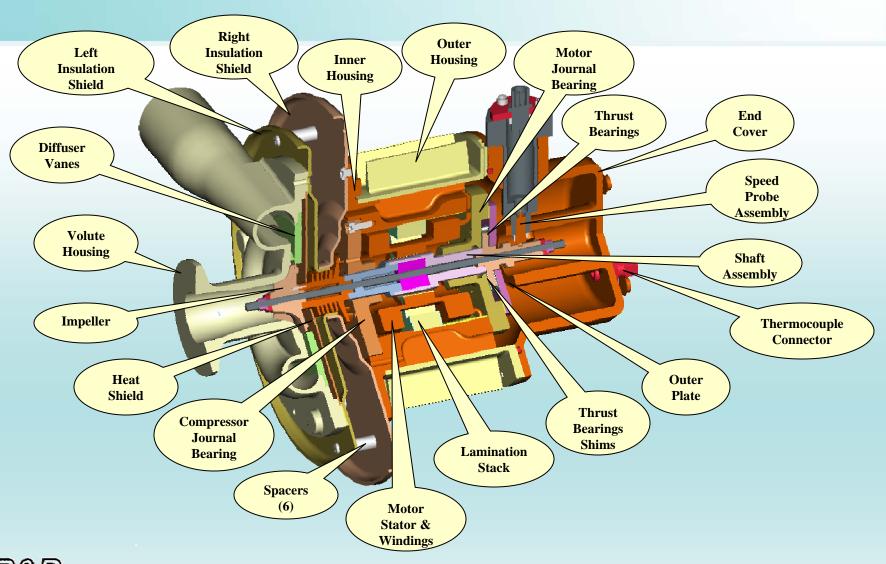
▲ Maintenance Interval 10,000 hours

▲ No. of Thermal Cycles Tolerance 30

▲ Annual Production Volume 50,000



Technical Requirements


- Low Cost
- ❖ High Temperature Capability (~850°C)
- High Efficiency
- High Reliability
- Compact
- Maintenance Free

AGRB Cross-Section Cut Vertically

AGRB Cut Away View

Technical Summary

▲ Blower Type

Mechanical Speed

Pressure Ratio

Weight

Bearings

Motor Type

▲ Controller

▲ Operating Temperature

▲ Overall Efficiency

Centrifugal

98,600 rpm

1.025

4.26 kg (9.38 lbs)

0.565 liter (34.5 cu. in.)

Foil Gas Bearings

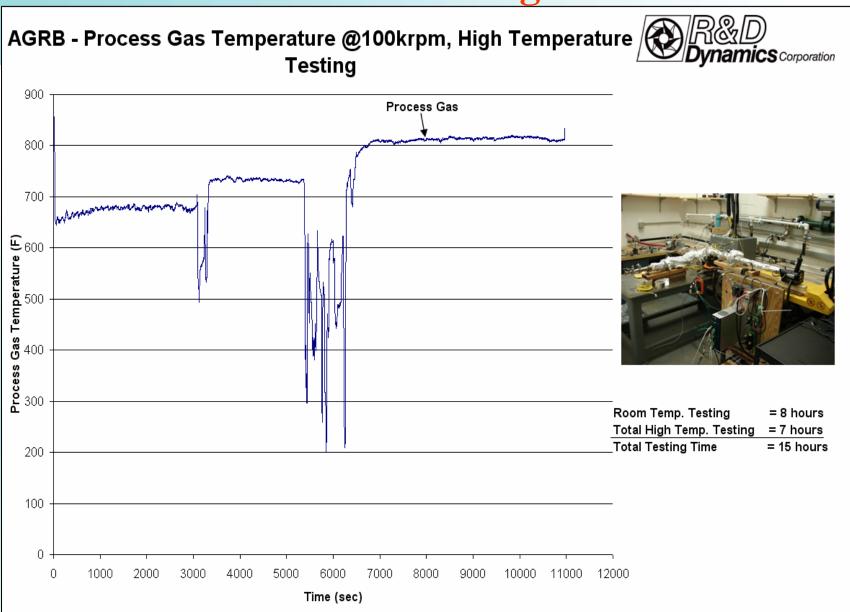
Permanent Magnet Motor

Sensorless

850° C (1562° F)

45%

AGRB Parts



AGRB Assembled

AGRB Lab Testing

Future Plans & Conclusion

- ❖ Machine to be tested in 2nd year of funding.
- Cost reduction will be done.
- *AGRB will be system tested at SECA member's facility.
- *RDD has plans for mass producing the blower.

Cathode Blower Advancements

Grant No: DE-FG02-06ER84616

Summary of Advancements

- ❖ A low cost high efficiency cathode air blower has been designed.
 - Oil free
 - Highly efficient (>61%)
 - Highly reliable
 - Maintenance free
 - Higher design life (>40,000 hrs)
 - Lower noise (< 70dBa)
 - Easily scalable
 - Variable speed (turn down ratio > 5:1)
- ❖ A cost model targeting \$100 has been developed.
 - Road map for low cost using DFMA techniques
 - Blower made of only 16 parts
 - Split housing design invented to reduce cost
 - Low Blower cost (<\$106)

Summary of Advancements

- Bread board test conducted to prove structural strength of plastic impeller concept.
 - Plastic impeller manufactured (impeller made of PPS plastic)
 - Impeller tested at high speed (tested up to 155,000 rpm)
- Phase I design and cost met.
 - Ricardo, Inc. supported DFMA effort
 - Blower cost met target
 - Blower efficiency exceeds 60%
 - Blower reliability high
- * Feasibility of program achieved.

Specifications

★ Working Fluid Air

► Pressure Ratio 1.1 to 1.2

✓ Volume Flow 1500 slpm

▲ Turn-Down Ratio 5:1

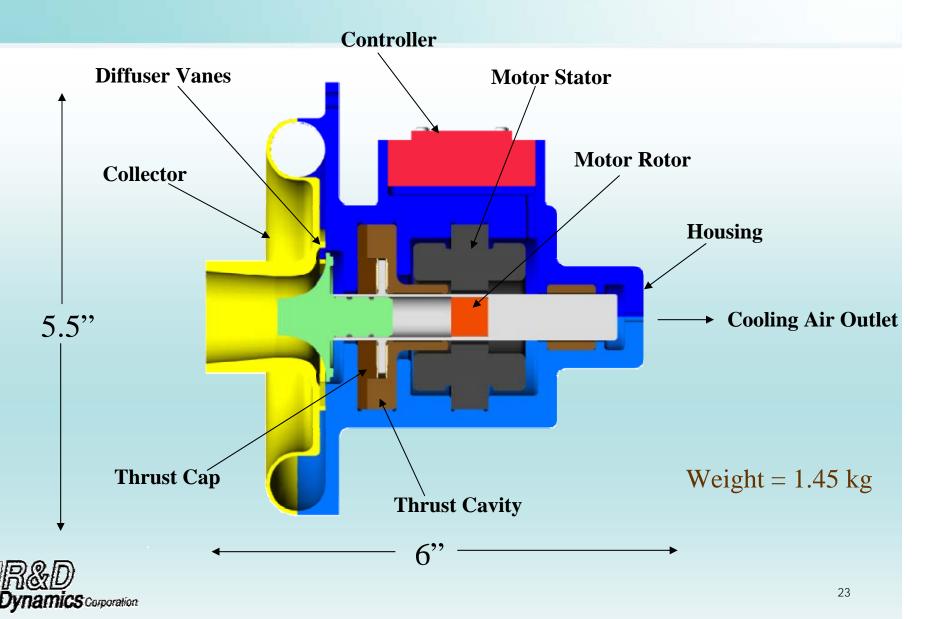
▲ Overall Efficiency >60%

▲ Design Life >40,000 hrs

▲ Maintenance Interval 10,000 hrs

▲ Target Cost \$100 @ 50,000 units/yr

▲ Noise Level <70 dBa



Key Issues

- Low Cost
- High Efficiency
- High Reliability
- Oil free

Low Cost Blower Cross-Section Number of Parts = 16

Technical Summary

▲ Blower Type

Mechanical Speed

Weight

Bearings

Motor Type

Controller Type

▲ Input Electric Power

Overall Efficiency

▲ Total Blower Cost

▲ Life

Centrifugal

80,500 rpm

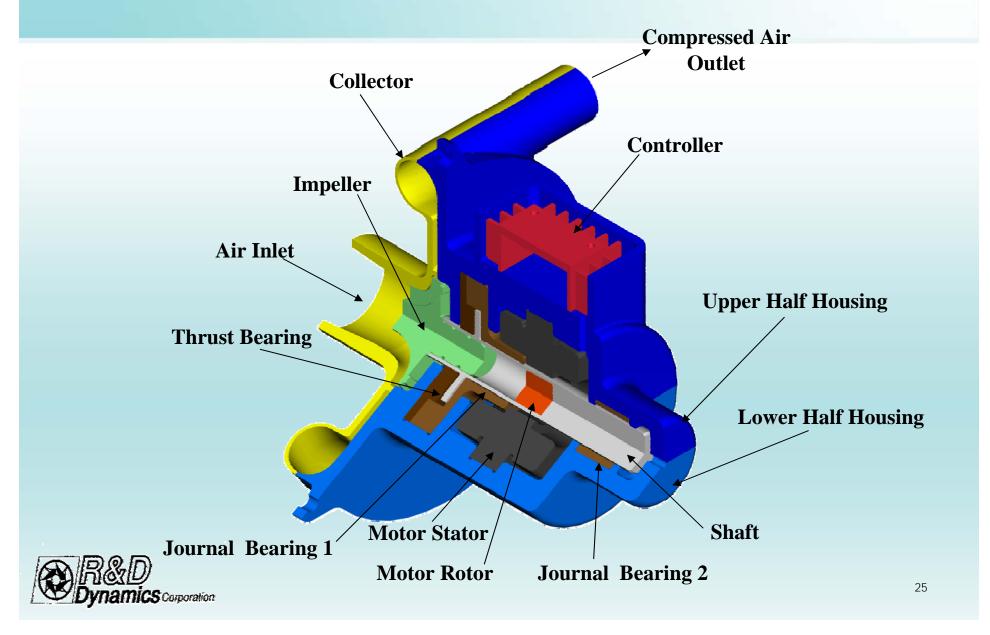
1.45 kg (3.2 lbm)

Foil Gas Bearings

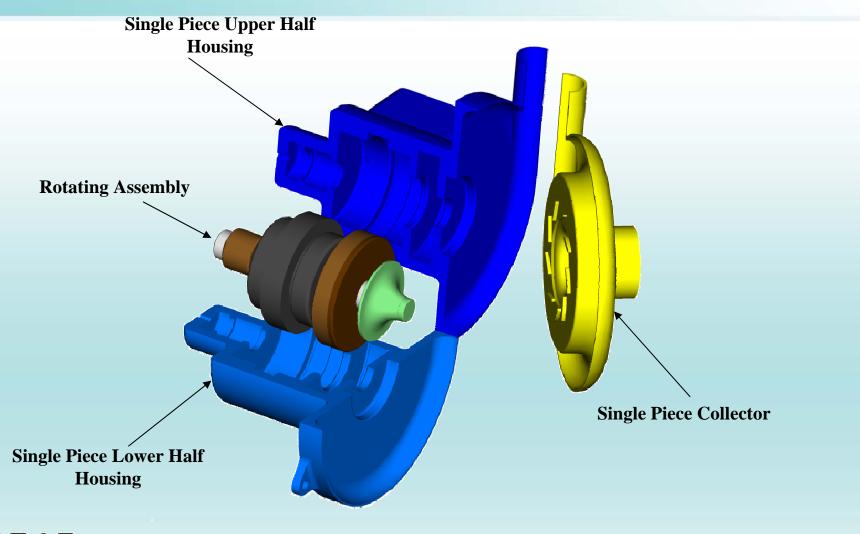
Permanent Magnet Motor

Sensorless Controller

769 watt


61.6 %

\$105.11 [@ 50,000 units/year]


>40,000 hrs

Blower Cut-Section View

Innovative Low Cost Split Housing Design

Cathode Air Blower Cost Model

Low Cost Cathode Air Blower Cost Model			
Companient	Cost	Motorial	Manufacturing Processor
Upper Helf Housing	\$4.79	Nylon	injection moid
Lower Half Housing	\$4.79	Nylon	injestion mold
Journal Bearing	\$1.24	Inconel	Stamping
Thrust Goaring	\$15.32	inconei	Stemping, Welding
Bearing Sleaves	\$2.03	Akıminum	Rolling
Sheat	21.6	Akminum	Machining, Annualizing
impelier	\$1.32	PPS Pleatic	inje:iton mold
Thrust Cap	\$2.14	Aluminum	Casting, machining
Collector	91.68	Nylon	injestion mold
Shime, lestenere & screwe	\$0.00	-	-
Total Part Cost	\$35.70		
Manufacturing Tooling & Assembly Tool	\$3.35		
Labor Cost	\$1.54		
Sub Total	\$41.59		
Motor	\$8.95		
Controller	\$54.57		
Cathode Air Blower Total Cost	\$105.11		

R&D Dynamics Can Offer SECA Members

- * Blowers with
 - **✓** Outstanding Performance
 - **✓** Compact Size
 - **✓** High Reliability
 - **✓** Low Cost

R&D Dynamics Plans To Meet SECA Blower Needs

- **✓** Future Production Blowers Will Meet SECA Cost Targets
 - "Design For Manufacturing and Assembly" techniques plus novel designs will be used.
- ✓ 15 Acres of Land Purchased for Expansion

Acknowledgement

R&D Dynamics would like to acknowledge

DOE and SECA members for their support of

fuel cell blower development

