Brazed Seals

Alternative Sealing Technology for Solid Oxide Fuel Cells

U.S. Department of Energy, Office of Fossil Energy, SECA Program

7th Annual SECA Workshop September 12 – 14, 2006

K. S. Weil, J. P. Choi, and J. Y. Kim

Pacific Northwest National Laboratory Richland, WA 99352 USA

Battelle

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Reergy

What is Brazing?

Definition: A filler metal is heated to melting and under capillary action fills the gap between the sealing surfaces. When cooled, a solid joint forms.

Braze Filler Metal

Active Metal Brazing:

A specialized technique that employs a reactive element such as titanium to facilitate wetting between the filler metal and a ceramic substrate

Typical Filler Metals:

Process Conditions:

Au-Ni-Ti, Au-Ni-V-Mo, Ag-Cu-Ti, Pd-Ni-V

Vacuum or inert gas environment 850°C or higher

Joint Oxidation

KS Weil and JP Rice, Scr. Mater., 52 (2005) 1081

(Cr,Fe)₂O₃ scale formation after 200hrs air exposure at 700°C

Cathode Decomposition

Under vacuum at T > 700°C:

 $\text{LaFeO}_3 \ \rightarrow \ \frac{1}{2} \ \text{La}_2\text{O}_3 \ + \ \frac{1}{2} \ \text{Fe}_2\text{O}_3$

Original Braze Position

- A new method of ceramic-to-ceramic and ceramic-to-metal joining
- Uses a unique filler metal system: a soluble metal oxide dissolved in a noble metal – e.g. CuO in Ag
 - Is conducted in open air (i.e. in a simple muffle or continuous belt furnace)
 - Does not require fluxing or the use of inert cover gas
 - Confers oxidation resistance and ductility to the joint

Shao et al, *J. Am. Ceram. Soc.* [1993] 2663

Pacific Northwest National Laboratory U.S. Department of Energy 5

Air Brazing: Aging & Cycling Tests

Thermal Cycling (75°C/min, RT \rightarrow 750°C):

KS Weil, CA Coyle, JT Darsell, GG Xia, and JS Hardy, J. Power Sources, 152 (2005) 97

Air Brazing: Joining Scaled-Up Components

Preliminary testing with full-scale components is very encouraging:

Seal remains hermetic after testing through five thermal cycles

High-temperature degradation in a dual atmosphere environment

Pure Silver

Singh et al., *J. Mater. Eng. Perform.*, 13 (2004) 287

Process consistency

Pore formation due to poor wetting and/or cooling upon _ shrinkage and "Squeeze-out"

Pacific Northwest National Laboratory U.S. Department of Energy 8

- Dual atmosphere degradation
 - Observed three different types of pore defects all of which we suspect can be mitigated
 - Phenomenon is not significant with respect to short-term use (up to 2000hrs) no loss in hermeticity, but a measurable loss of strength
 - Could potentially be problematic over longer periods of operation
- AI-Ag-CuO air braze filler metals are being investigated to eliminate long-term dual atmosphere degradation
 - Initial alloy compositions have been successfully synthesized, but require further optimization with respect to joint strength
 - Observe improved joint strength upon H₂ exposure
 - Dual atmosphere testing currently in progress
- New composite filler metal composition (containing Al₂O₃ particulate) looks very promising
 - Joint strength equal to that of the base material (Al₂O₃)
 - Can combine with the Al-alloyed material to develop a very durable air braze filler metal

- Tube testing 200 2000hr aging tests conducted at 800°C with flowing H₂ inside and flowing air outside
- Examined the following variables: exposure time (200, 1000, and 2000hrs), filler metal composition (Ag2CuO and Ag8CuO), and braze temperature (980°C and 1100°C)

- Three types of pores were found:
 - Air pockets formed during processing (Type 1) large (mm in size) and often found near the center of the joint
 - Pores (Type 2) formed within 5hrs of exposure due to CuO reduction : CuO + 2H_{diss} Ag → Cu_{diss} Ag + H₂O↑ - >5µm in size, found first along the boundary exposed to H₂
 - Pores (Type 3) formed around ~2000hrs due to H_{diss} + O_{diss} → H₂O↑sub-micron to micron in size and only found after "extensive" dual atmosphere exposure (within the center of the joint)
- In all cases, the porosity remains isolated (not interconnected)
- In all cases, the tubes are hermetic at the end of testing
- Progression of Type 2 pore front appears to scale with √t fit, which suggests a means of estimating the lifetime of an Ag-CuO seal based on dual atmosphere degradation

Ag8CuO brazed at 980°C; dual atm exposure at 800°C for 1000hrs

Pacific Northwest National Laboratory U.S. Department of Energy 12

Dual Atmosphere Degradation: Hermeticity

Seal hermeticity:

Progression of the Type 2 pore front appears to scale with \sqrt{t} .

Based on this, we can roughly extrapolate the lifetime of the seal:

 $t_{\rm 95\%\;Degradation} \sim 5{,}200 hrs$ at 800°C and $\sim 12{,}600 hrs$ at 750°C

... standard filler metal needs to be modified for longer-term use

Concept: develop a passivation layer that inhibits H and O diffusion and eliminates pore Types 2 & 3

Prior work on Al₂O₃/Al/Al₂O₃ joining:

1000°C, 10hr, Air:

Forms an adherent Al₂O₃ scale that protects the underlying metal

JY Kim, JS Hardy, and KS Weil, J. Mater. Res., 19 (2004) 1717

Ag-Al-(CuO) Filler Metal Alloys

- Started by fabricating Ag-Al binary compositions
- Observed adequate joining, but found poor joint strength
- Turned to the Ag-Al-CuO system

Ag-Al-(CuO) Filler Metal Alloys

Observe improved strength after H₂ exposure

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 16

Al₂O₃-modified Ag-CuO Filler Metal

- Alumina addition to high CuO content filler metals leads to a dramatic increase in bend strength. The joints are as strong as the ceramic substrate!
- For no or low CuO, the alumina addition did not improve bend strength

Ag-8CuO-10Al₂O₃

No squeeze out or porosity observed in the Al₂O₃-modified filler metals

Al₂O₃-modified Ag-CuO Filler Metal

Al₂O₃-modified Ag-CuO Filler Metal Ag8CuO **Air Pockets** 0 vol% Al₂O₃ X500 20kU X500 50×m 20kU 50 Mm FCA00-002b FCA00-00b Brittle fracture through alumina substrate 5 vol% Al₂O₃ **Ductile fracture in the** X200 100×m 20kU 100 Mm FCA08-052a filler metal 30

Pacific Northwest National Laboratory U.S. Department of Energy 19

- Have identified three types of pores that can form in Ag-CuO air brazed joints exposed to a high-temperature, dual atmosphere environment
 - Type 1 air pockets formed during joining
 - Type 2 micron-sized pores formed due to reduction of CuO ppts
 - Type 3 pores formed along the matrix grain boundaries due to reaction between dissolved H and O (observed at ~2000hrs of exposure)
- The pores do not appear to be problematic in short-term testing (2000hrs or less)
- Can eliminate Type 1 pores using filler metals containing Al₂O₃ particulate and a high CuO content
- Preliminary testing indicates that Type 2 and possibly Type 3 pores can be eliminated by adding AI as an alloying agent

- Investigate the use of Al₂O₃ in combination with high CuOcontaining Ag-Al-CuO filler metals as a means of achieving high strengths and mitigating dual atmosphere degradation
- Examine the mechanical properties of Ag-AI-CuO-Al₂O₃ brazed joints after single atmosphere exposure for t_{exposure} < 1000hrs and compare with prior results obtained on bend specimens joined using the Ag-CuO, Ag-AI, and Ag-AI-CuO filler metals
- Conduct 1000+hr dual atmosphere exposure testing on tube specimens sealed using the Ag-Al-CuO-Al₂O₃ filler metals
- Conduct post-exposure hermeticity testing and metallographic analysis
- Carry out preliminary joining studies using prototypic SOFC materials

- John Hardy, Joe Rice, Jim Coleman, Nat Saenz, and Shelly Carlson
- Support: U. S. DOE, Office of Fossil Energy, SECA program

The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. DOE under Contract DE-AC06-76RLO 1830