Brazed Seals

Alternative Sealing Technology for Solid Alternative Sealing Technology for Solid Alternative Sealing Technology for Solid Oxide Fuel CellsOxide Fuel Cells Oxide Fuel Cells

U.S. Department of Energy, Office of Fossil Energ y, SECA Program

7th Annual SECA Worksho p September 12 – 14, 2006

K. S. Weil, J. P. Choi, and J. Y. Kim

Pacific Northwest National Laboratory Richland, WA 99352 USA

What is Brazing?

Definition: A filler metal is heated to melting and under capillary action fills the gap between the sealing surfaces. When cooled, a solid joint forms.

Braze Filler Metal

Pacific Northwest National Laboratory 2

Active Metal Brazing: A specialized technique that employs a reactive element such as titanium to facilitate wetting between the filler metal and a ceramic substrate

Typical Filler Metals:

Process Conditions:

Au-Ni-Ti, Au-Ni-V-Mo, Ag-Cu-Ti, Pd-Ni-V

Vacuum or inert gas environment 850ºC or higher

Joint Oxidation

KS Weil and JP Rice, *Scr. Mater.***, 52 (2005) 1081**

(Cr,Fe) 2O 3 scale formation after 200hrs air exposure at 700°C

Cathode Decomposition

Under vacuum at T > 700ºC:

LaFeO 3→ ½ L a 2O 3 + ½ Fe 2O 3

Original Braze Position

- \bullet **A new method of ceramic-to-ceramic and ceramic-to-metal joining**
- • **Uses a unique filler metal system: a soluble metal oxide dissolved in a noble metal – e.g. CuO in Ag**
	- \blacktriangleright **Is conducted in open air (i.e. in a simple muffle or continuous belt furnace)**
	- \blacktriangleright **Does not require fluxing or the use of inert cover gas**
	- \blacktriangleright **Confers oxidation resistance and ductility to the joint**

Shao et al, *J. Am. Ceram. Soc***. [1993] 2663**

Air Brazing: Aging & Cycling Tests

Thermal Cycling (75ºC/min, RT → 750ºC):

KS Weil, CA Coyle, JT Darsell, GG Xia, and JS Hardy, *J. Power Sourc e ^s***, 152 (2005) 97**

Air Brazing: Joining Scaled-Up Components

Preliminary testing with full-scale components is very encouraging:

Seal remains hermetic after testing through five thermal cycles

• High-temperature degradation in a dual atmosphere environment

Battelle

13 (2004) 287

• Process consistency

Pore formation due to poor wetting and/or cooling upon shrinkage and"Squeeze-out"

- o **Dual atmosphere degradation**
	- \blacktriangleright **Observed three different types of pore defects – all of which we** suspect can be mitigated
	- \blacktriangleright ▶ Phenomenon is not significant with respect to short-term use (up to **2000hrs) – no loss in hermeticity, but a measurable loss of strength**
	- \blacktriangleright **Could potentially be problematic over longer periods of operation**
- **Al-Ag-CuO air braze filler metals are being investigated to eliminate long-term dual atmosphere degradation**
	- \blacktriangleright ▶ Initial alloy compositions have been successfully synthesized, but **require further optimization with respect to joint str ength**
	- \blacktriangleright **Observe improved joint strength upon H 2 exposure**
	- \blacktriangleright **Dual atmosphere testing currently in progres s**
- \bullet New composite filler metal composition (containing $\mathsf{Al}_2\mathsf{O}_3$ **particulate) looks very promising**
	- \blacktriangleright Joint strength equal to that of the base material (Al $_2$ O $_3$)
	- ▶ Can combine with the Al-alloyed material to develop a very durable air **braze filler metal**
- \bullet **Tube testing – 200 - 2000hr aging tests conducted at 800ºC with flowing H 2 inside and flowing air outside**
- o **Examined the following variables: exposure time (200, 1000, and 2000hrs), filler metal composition (Ag2CuO and Ag8CuO), and braze temperature (980ºC and 1100ºC)**

- **Three types of pores were found:**
	- ▶ Air pockets formed during processing (Type 1) large (mm in size) and **often found nea r the center of the joint**
	- ` **Pores (Type 2) formed within 5hrs of exposure due to CuO reduction : CuO + 2Hdiss Ag → Cudiss Ag + H ²O - > 5** µ**m in size, found first along the bounda ry exposed to H 2**
	- \blacktriangleright Pores (Type 3) formed around ~2000hrs due to H_{diss} + O_{diss} \rightarrow H₂O↑**sub-micron to micron in size and only found after "extensive" dual atmosphere exposure (within the cent er of the joint)**
- o **In all cases, the porosity remains isolated (not interconnected)**
- o **In all cases, the tubes are hermetic at the end of testing**
- o **Progression of Type 2 pore front appears to scale with** √**t fit, which suggests a means of estimating the lifetime of an Ag-CuO seal based on dual atmosphere degradation**

o

Ag8CuO brazed at 980 °**C; dual atm exposure at 800** °**C for 1000hrs**

Pacific Northwest National Laboratory 12

Dual Atmosphere Degradation: H ermeticity

Seal hermeticity:

Progression of the Type 2 pore front appears to scale with √**t.**

Based on this, we can roughly extrapolate the lifetime of the seal:

t95% Degradatio n ~ 5,200hrs at 800ºC and ~ 12,600hrs at 750ºC

∴ **standard filler metal needs to be modified for longer-term use**

Concept: develop a passivation layer that inhibits H and O diffusion and eliminates pore Types 2 & 3

Prior work on Al 2O ³/Al/Al 2O 3 joining:

Forms an adherent Al2O3 scale that protects the underl ying metal

JY Kim, J S Hardy, and KS Weil, *J. Mater. Res.***, 19 (2004) 1717**

- \bullet **Started by fabricating Ag-Al binary compositions**
- **Observed adequate joining, but found poor joint strength**
- z **Turned to the Ag-Al-CuO system**

Ag-Al-(CuO) Filler Metal Alloys

Observe improved strength after H₂ exposure

Battelle

- **Alumina addition to high CuO content filler metals leads to a dramatic increase in bend strength.** *The joints are as strong as the ceramic substrate!*
- **For no or low CuO, the alumina addition did not improve bend strength**

Ag-8CuO-10Al₂O₃

No squeeze out or porosity observed in the Al₂O₃-modified filler metals

Battelle

- o **Have identified three types of pores that can form in Ag-CuO air brazed joints exposed to a high-temperature, dual atmosphere environment**
	- ` **Type 1 – air pockets formed during joining**
	- ` **Type 2 – micron-sized pores formed due to reduction of CuO ppts**
	- ` **Type 3 – pores formed along the matrix grain boundaries due to reaction between dissolved H and O (observed at ~2000hrs of exposure)**
- **The pores do not appear to be problematic in short-term testing (2000hrs or less)**
- $\bullet~$ Can eliminate Type 1 pores using filler metals containing $\mathsf{Al}_2\mathsf{O}_3$ **particulate and a high CuO content**
- **Preliminary testing indicates that Type 2 and possibly Type 3 pores can be eliminated by adding Al as an alloying agent**
- o **•** Investigate the use of Al₂O₃ in combination with high CuO**containing Ag-Al-CuO filler metals as a means of achieving high strengths and mitigating dual atmosphere degradation**
- **•** Examine the mechanical properties of Ag-Al-CuO-Al₂O₃ brazed joints after single atmosphere exposure for t_{exposure} < 1000hrs and compare **with prior results obtained on bend specimens joined using the Ag-CuO, Ag-Al, and Ag-Al-CuO filler metals**
- **Conduct 1000+hr dual atmosphere exposure testing on tube** specimens sealed using the Ag-Al-CuO-Al₂O₃ filler metals
- \bullet **Conduct post-exposure hermeticity testing and metallographic analysis**
- **Carry out preliminary joining studies using prototypic SOFC materials**
- • **John Hardy, Joe Rice, Jim Coleman, Nat Saenz, and Shelly Carlson**
- **Support: U. S. DOE, Office of Fossil Energy, SECA program**

The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. DOE under Contract DE-AC06-76RLO 1830

