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Issues and Questions:
Performance conditioning

-What is time scale and what phenomena is it related to?

Degradation of cathode performance
-Why does Cr degrade while Co, Fe, enhance performance?
-Why differences between conventional LSM and advanced LSF cathodes?
-Effect of microstructure?
-Effect of composition?
-Overpotential/temperature induced?
-How to separate effects?

Phase segregation of Sr at cathode/current collector interface
-What systems?
-What is impact?
-Effect on surface rates?
-Effect of an electric field on cation distributions?

Formation of resistive phases (e.g. SrZrO3)
-Where do they form?
-What are their properties?

µO2 effect on cathode performance
- Non-Nernstian, NEMCA, etc?
- Increase in Vo¨ @ cathode /electrolyte interface

-How much?
-Effect on ko?

Fundamental Mechanisms of SOFC Cathode Reactions

http://hitec.mse.ufl.edu
University of Florida - U.S. Department of Energy 

High Temperature Electrochemistry Center Workshop
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Suggested Research Approaches/Investigations:
A. Continue to Empirically Develop New Materials and Microstructures
B. Systematically:

Computational Approach
Provide fundamental understanding
Calculate surface and bulk energetics

Surface Science and Spectroscopic Techniques
Determine surface sites, vacancies, adsorbed species and effects of surface reconstruction
Measure surface and bulk energetics

Catalysis Techniques
Determine O-adsorption/dissociation mechanisms
Determine rate constants (ko)

Novel Electrochemical Characterization
Separate contributions to impedance/polarization
Frequency dependence and relation to mechanism

Quantify Microstructural Effects
Fabricate and evaluate model architectures
Apply advanced characterization techniques such as FIB/SEM

Integrate (all of the above) and Deconvolute Mechanisms
Develop fundamental models

Fundamental Mechanisms of SOFC Cathode Reactions
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Surface Free Energy
(eV/Å2)

-3.215 -2.750 -3.921

La-La Ead = -2.6 eV

La-O Ead = -2.5 eV

• Oads on La-La
site preferred

• LaO termination
energetically more
favorable

La
O

Oxygen adatom

Computational Approach

Susan Sinnott, University of Florida

Calculate preferred
oxide surface and
adsorption site
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Computational Approach

Calculate reaction
pathway and
intermediate steps

-> k
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Surface Science and Spectroscopic Techniques

Determine presence
and location of
surface defects

Atomic Force Microscopy (AFM)



UF-DOE HiTECD. Wayne Goodman, Texas A&M University

Surface Science and Spectroscopic Techniques

Measure energy of
surface oxygen vacancies
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Surface Science and Spectroscopic Techniques

D. Wayne Goodman, Texas A&M University

Relate defect energies
to electronic band
structure

Evaluate steps, etc.
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Surface Science and Spectroscopic Techniques

VO
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EC

EV
"Spectroscopic Investigation of Oxygen Vacancies in Solid Oxide Electrolytes," E. D. Wachsman, et al., Applied Physics A 50, 545 (1990). 
"Luminescence of Anion Vacancies and Dopant-Vacancy Associates in Stabilized Zirconia," E. D. Wachsman, et al., in Science and Technology of Zirconia (1993).

F Centers:

Yzr’

Determine electron
occupancy and
affect of
neighboring cations

uv/vis Absorption
and Fluorescence
Spectroscopy
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Determine adsorbed species:
• Peroxide O2

2- and
Superoxide O2

-

Adsorption occur

Surface Science and Spectroscopic Techniques
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Computational and Spectroscopic Techniques
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Catalysis Techniques

What is rate limiting step?

J. Nowotny et al., “Charge Transfer at Oxygen/Zirconia Interface at
Elevated Temperature”, Advances in Applied Ceramics (2005)

Multiple potential mechanisms each having PO2 dependence
However, PO2 dependence not unique

-
-
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• Temperature programmed desorption (TPD)
– Ramp temperature in He to determine adsorbed and/or decomposition species

• Temperature programmed oxidation (TPO)
– Ramp temperature in O2 gas mixture to determine reaction rates

• Isotope exchange (O16 vs. O18)
– Switch gas to separate solid vs gas species contribution to mechanism

Catalysis Techniques
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TPD of LSCF
Bulk-O desorption

LaSrCoFeO3 -> LaSrCoFeO3-δ + δ/2O2
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io = kf PO2
1/2 [VO

••] - kb [OO
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TPO of LSCF
O-Absorption to fill VO

••

depending on PO2 history

LaSrCoFeO3-δ + δ/2O2 -> LaSrCoFeO3
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kchem = kf [VO
••]
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LSCF Isotope exchange elucidates complex mechanism
O2

18  = gas phase oxygen, O2
16 = lattice oxygen

O16O18 = scrambled product due to surface reaction

Catalysis Techniques
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Novel Electrochemical Characterization

Stuart Adler, University of Washington

Electrochemical Impedance
Spectroscopy has been a
primary tool for
understanding electrode
phenomena
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Novel Electrochemical Characterization

Stuart Adler, University of Washington
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Novel Electrochemical Characterization

Need to combine with other techniques to determine mechanism
Stuart Adler, University of Washington
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Novel Electrochemical Characterization

Allan Jacobson, University of Houston

kchem = f(PO2
n) - Need to combine electrochemical and catalysis techniques

= f(surface structure) - Need surface crystallographic information

io = kf [VO
••] PO2

1/2 - kb [OO
X] [h•]2

kchem = kf [VO
••]
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Novel Electrochemical Characterization

Allan Jacobson, University of Houston

Thin film LSC on YSZ

Potential influences defect distribution at interfaces
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Electrodes

Current/Voltage

Capillary to Mass Spec

YSZ

16O2

18O2/16O2

Novel Electrochemical Characterization

Combine electrochemical and catalysis techniques:
kchem = kf [VO

••] ~ f(PO2
n)
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Electrodes

Current/Voltage

Capillary to Mass Spec

YSZ

Include:
• Electrode structure
• Current-voltage behavior: io~ko, k = f(V)
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Novel Electrochemical Characterization

18O2/16O2
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Optimize Microstructure for:

• Activation Polarization
– Electrocatalytic Activity

• Increase specific catalytic activity
• Increase TPB
• Dispersed catalyst

• Ohmic Polarization
– Electronic vs. Ionic Transport

• Electronic conduction path
• Ionic conduction path

• Concentration Polarization
– Gas transport

• Graded porosity
• Gas vs. solid state transport

      

! 
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"
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2
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Quantify Microstructural Effects
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Quantify Microstructural Effects

Craig Jacobson, Lawrence Berkeley National Laboratory
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Quantify Microstructural Effects

Craig Jacobson, Lawrence Berkeley National Laboratory
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Quantify Microstructural Effects

Allan Jacobson, University of Houston

Electronic Conductors (reaction at TPB): Pt and LSM
Mixed Conductors (reaction spread over electrode): LSF, LSCF, etc.
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BRO-ESB
(initial)

BRO-ESB
(current best)

Pure BRO

(LSM-YSZ)
(LSM-GDC-LSCF)

(LSM-GDC)

C. Xia, Y. Zhang, M. Liu

Quantify Microstructural Effects

Bi2Ru2O7/ESB 2-Phase Cathode

Adding ionic phase and optimizing microstructure
reduced 700°C ASR from 1 Ωcm2 to 0.03 Ωcm2

BRO

ESB
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z

50 nm

x

y

LSM

YSZ

Focused Ion Beam
•Enables 3-D analysis of electrode microstructure

- Particle-size, pore-size, & distribution
- Triple-phase boundary density
- Tortuosity

Quantify Microstructural Effects
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LSM (Nextech)
on YSZ

Consecutive
50nm slices
in Z-direction
converted to
3D structure

Quantify
continuous
microstructural
features such
as tortuosity

QUANTIFYING MICROSTRUCTURE
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LSM cathode microstructural features directly related to sintering:
• Pore surface area decreases linearly with increasing sintering temperature
• TPB length decreases linearly with increasing sintering temperature

Quantify Microstructural Effects
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Integrate and Deconvolute Mechanisms

Jeff Stevenson, Pacific Northwest National Laboratory
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Integrate and Deconvolute Mechanisms
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LSM cathode impedance components directly related to microstructure:
• Dissociative-Adsorption impedance decreases exponentially with increasing

pore surface area
• Charge Transfer impedance decreases exponentially with increasing TPB length

RDA = 994 e-0.6052 PSA, R= 0.98986 RCT = 162 e-3.964 LTPB,   R= 0.99815 

Integrate and Deconvolute Mechanisms

LSM/YSZ in air at 800°C LSM/YSZ in air at 800°C
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Suggested Research Approaches/Investigations:
Computational Approach

Provide fundamental understanding
Calculate surface and bulk energetics

Surface Science and Spectroscopic Techniques
Determine surface sites, vacancies, adsorbed species and effects of surface reconstruction
Measure surface and bulk energetics

Catalysis Techniques
Determine O-adsorption/dissociation mechanisms
Determine rate constants (ko)

Novel Electrochemical Characterization
Separate contributions to impedance/polarization
Frequency dependence and relation to mechanism

Quantify Microstructural Effects
Fabricate and evaluate model architectures
Apply advanced characterization techniques such as FIB/SEM

Integrate (all of the above) and Deconvolute Mechanisms
Develop fundamental models

Fundamental Mechanisms of SOFC Cathode Reactions

Rationally Design New Materials and Advanced Microstructures
Predict performance and validate models
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