Cathode Infiltration Steve Visco Hideto Kurokawa, Mike Tucker, Tal Sholklapper, Xuan Chen, Ken Lux Craig Jacobson, Lutgard De Jonghe Lawrence Berkeley National Laboratory Berkeley, California USA Presented at 7th Annual SECA Workshop and Peer Review Core Technology Program – Electrodes and Contaminant Issues September 13th 2006 # Improvement of Air Electrode Low Temperature Performance #### Simple metal nitrates Introduce oxides that would otherwise react at the firing temperature: Sm_{0.6}Sr_{0.4}CoO_{3-x}, La_{0.6}Sr_{0.3}Co_{0.8}Fe_{0.2}O₃, etc. #### Surfactant dispersed electrode precursors Porous electrolyte matrix Composite Commercial electrodes (YSZ-LSM) - electronic conductorionic conductor - catalysts # Power density was improved by as much as ~2 times at 650°C by cobalt doping of cathode using a simple infiltration method. # TEM: Co₃O₄ Particles in the Pores of LSM-10Sc1YSZ Composite **Before Doping** **Cobalt Doped** ### LSM-YSZ electrode infiltrated with 20mg/cm² Co Nitrate ## Infiltration Step **Nitrate-Surfactant Concentrated Precursor** Surfactant dispersed Electrode Precursors Porous electrolyte matrix Composite Commercial electrodes (YSZ-LSM) ## Nano-particulate SOFCs - Technology involves vacuum impregnation of concentrated perovskite electrode (or electrolyte) precursor solutions that can generate the entire electrode in a single infiltration step. - Can be used to fabricate unique electrode microstructures: - Nanoparticulate network infiltrated into porous electrolyte (allows stack fabrication in reducing atmosphere followed by introduction of perovskite structure) - nanoparticulate network must be continuous for electron path. - Nanoparticulate network deposited onto existing electrode (to improve low temperature performance) - existing LSM network used for current collection, expands reaction surface area. - LBNL has used this approach to improve the performance of conventional electrodes and to fabricate unique structures - LBNL is refining the technology to control the depth of penetration into porous structure and size of resulting nanoparticles ## Nanoparticulate SOFC Electrodes # Focused-ion-beam (FIB) trench showing cross-section of single-step LSM infiltrated thin-film SOFC Infiltrated cathode after 500 hours continuous operation at 650 °C #### Performance & Stability of Nanoparticulate Electrodes at 650 °C # Supported 2-D Monolayer of Particulate Catalyst LSM Network with Electronic Probes ### EDX Line Scan SSZ to LSM ## Infiltration Step **Nitrate-Surfactant Concentrated Precursor** Surfactant dispersed Electrode Precursors Porous electrolyte matrix electronic conductor ionic conductor Composite Commercial electrodes (YSZ-LSM) # Commercial Symmetric Electrolyte Supported LSCF Cell from INDEC LSCF-YDC/TZ3Y/YDC-LSCF InDEC B.V. # Infiltration of LSM Nanoparticles into LSM-YSZ Composite 50 kX 100 kX SEM Image of LSM-YSZ composite sintered at 1200°C for 4 hours, then infiltrated with LSM-surfactant precursor and fired at 900°C for 1 hour # Commercially Produced Cell - InDec, (LSCF-YDC/TZ3Y/YDC-LSCF) # Anode supported Ni-YSZ/YSZ/LSM-YSZ cell infiltrated with YDC Cell Impedance at 700 °C ## Anode supported Ni-YSZ/YSZ/LSM-YSZ cell infiltrated with YDC Cell Performance at 700 °C #### Sulfur-tolerant Anode with Single-Step infiltration Sulfur-tolerant, cathode supported cell with an SYTO/YSZ anode was developed and the performance improved with infiltration of CeO₂ and Ru. Cross section of cathode supported cell #### The effect of single-step infiltration on sulfur-tolerant anode SYTO/YSZ + dispersed catalytic materials (on 500µm YSZ disk) ### Sulfur tolerance of SYTO/YSZ+CeO₂+Ru anode AC Impedance spectra of cathode support cell with SYTO/YSZ+CeO₂+Ru anode SYTO/YSZ+CeO₂+Ru anode was not affected by H₂S very much and completely recovered in H₂/H₂O. ## Performance of Single-Step Infiltrated, Cathode-Supported, Sulfur Tolerant Cell at 700 to 800 °C The cell with CeO₂/Ru infiltration showed **200 mW/cm²** at 700 °C and **550 mW/cm²** at 800 °C ### Metal Supported Tubular SOFC w/Infiltrated Electrodes #### Team: Investigators: Steven Visco Lutgard De Jonghe P.I. Program Lead Co-PI Scientists: Peggy Hou Velimir Radmilovic High temperature corrosion NCEM FIB/SEM/TEM Post Doc: Hideto Kurokawa Ken Lux Cr transport phenomena Air electrode stability Senior Technical Staff: Craig Jacobson Mike Tucker Grace Lau Inna Belogolovsky Processing and characterization Metal supported SOFC development Processing and analysis Processing and testing Graduate Students: Tal Sholklapper Liming Yang Xuan Chen Nano-particulate catalysts Novel anode catalysts Infiltration of cathode catalysts #### **Acknowledgements** - This work was supported by SECA through NETL - •Thanks to Lane Wilson for helpful discussion and long teleconferences....