SOFC Interconnects & Coatings J.W. Stevenson, Z.G. Yang (Task Leader), G.G. Xia, G.D. Maupin, X.S. Li, and P. Singh Pacific Northwest National Laboratory Richland, WA 99352 7th Annual SECA Workshop and Peer Review Philadelphia, PA, September 14, 2006 ## **Objectives and Approach** ### Objectives - Develop cost-effective, optimized materials and fabrication approaches for intermediate temperature SOFC interconnect and interconnect/electrode interface applications - Identify and understand degradation processes in interconnects and interconnect/electrode interfaces ### Approach - Materials and process development - Surface modification (Focus of today's presentation) - Interconnect/electrode contact materials - Alloy development - Characterization of candidate materials - Oxidation tests (including dual atmospheres air vs. moist hydrogen; air vs. simulated reformate), ASR tests, CTE, alloy and scale chemistry via XRD, SEM, EDS, TEM, etc. ## Spinel Protective Coatings: Background - Goal: Cost-effective protective coatings which improve alloy oxidation resistance, mitigate Cr volatility, and minimize contact resistance - Previous Accomplishments: - Studied structure and properties of compositions in $(Mn,Co)_3O_4$ system; selected (Mn_{1.5}Co_{1.5})₃O₄ - Developed slurry-based fabrication process for fabricating (Mn,Cr)₃O₄ spinel coatings onto FSS interconnects - Evaluated performance of coated alloys: oxidation, ASR, coating/alloy interactions - FY06 Accomplishments: - Investigated performance/stability of spinel-coated alloys under SOFC exposure conditions (dual atmosphere) - Performed long-term (> 1 year) oxidation tests on coated/uncoated **FSS** - Optimized slurry-based fabrication approach ## Conclusions - Mn_{1.5}Co_{1.5}O₄ spinel protective coatings are effective in reducing oxide scale growth kinetics and Cr volatility of Cr-containing ferritic stainless steels - Spinel-coated Crofer22APU (22-23% Cr, low Si) demonstrates longterm (>1 year) structural, thermo-mechanical, and electrical stability - No iron oxide nodule formation or other localized attack observed in coated Crofer22APU under dual exposure conditions - Spinel-coated AISI 430 (17% Cr, 0.5% Si) exhibits significant Fe diffusion into coating, and high ASR due to silica subscale formation - Slurry-based fabrication method has been improved; better control of microstructure and thickness - Alternative electroplating-based approaches under investigation # Properties of (Mn_{1.5}Co_{1.5})₃O₄ Spinel High electrical conductivity ~60 S/cm at 800°C $$\sigma_{Mn_{1.5}Co_{1.5}O_4} = 10^{3\sim 4}\sigma_{Cr_2O_3}$$ Good CTE match to FSS and anode-supported cells $$CTE_{Mn_{1.5}Co_{1.5}O_4} = 11.5 \times 10^{-6} K^{-1}, 20 - 800^{o} C$$ - Chemically compatible with contact pastes, cathodes - Cr-free composition # Fabrication of (Mn,Co)₃O₄ Spinel Protection Layers #### **Slurry-Based Process** Preparation of materials and slurry Spray- or dip- coating Heat treatment in reducing environment (4 hr, 800°C) Oxidation in air (800°C - Pre-oxidation or in-stack) $$4Mn_{1.5}Co_{1.5}O_4 \Rightarrow 6Co + 6MnO + 5O_2$$ $$6Co + 6MnO + 5O_2 \Rightarrow 4Mn_{1.5}Co_{1.5}O_4$$ ### **Effect of Coating on Scale Growth** ### **Long-Term Test of AISI 430** ### Coated # 1mMr...yvvv Fe 430 20µm Electron Image 1 800°C - 9,200 h - air **Uncoated** 800°C - 8,850 h - air ### **Effect of Coating on Crofer22APU Scale Growth** # Long-Term Oxidation Behavior of Crofer22 APU #### Coated ~ 4 µm scale 800°C - 9,200 h - air #### **Uncoated** ~ 14 µm scale 800°C - 8,850 h - air # Electrical Resistance after Long-Term Oxidation Test # Electrical Resistance of Spinel-Coated AISI 430 Results demonstrate need for low Si content in alloy; AISI 430 has ~0.5wt% Si # **Cr Volatility Experiments** Cr release of coated Crofer22APU was <4% of Cr release of uncoated Crofer22APU Transpiration measurements were carried out at 800°C in air with ~3%H₂O # Performance & Stability under Dual Atmosphere Exposure: *Isothermal Test* - Mn_{1.5}Co_{1.5}MnO₄ coating on Crofer22APU; prereduced at 800°C for 4 hours - ► Tested isothermally at 800°C / 1000 hours - Air (\sim 3%H₂O) vs. Hydrogen (\sim 3%H₂O) - SEM/EDS: ~2 wt%Fe in coating; no Fe₂O₃ nodule formation or other localized attack # Performance & Stability under Dual Atmosphere Exposure: *Thermal Cyclic Test* - Mn_{1.5}Co_{1.5}MnO₄ coating on Crofer22APU; pre-reduced at 800°C for 4 hours; pre-oxidized at 800°C for 24 hours - ► 110 thermal cycles: 8 hours at 800°C, 5°C/min - Total test duration: 2100 hours - Air (\sim 3%H₂O) vs. hydrogen (\sim 3%H₂O) - SEM/EDS: ~2 wt%Fe in coating; no Fe₂O₃ nodule formation or other localized attack ## **Optimization of Spinel Coating Process** - Transitioning from Solvent-based to Aqueous Slurry System - Environmentally friendly; compatible with spray-coating, dip-coating process - Improved control of coating thickness - ~2-20 microns via optimization of slurry viscosity and spray parameters - Reducing atmosphere heat treatment - Typically 800°C, but XRD indicates ~650°C is sufficient - Typically 4 hours, but TGA, XRD indicate 1 hour is sufficient - Investigating elimination of reducing heat treatment via combined slurry/solution-infiltration approach # **Growth of Spinel Protection Layers** via Oxidation of Co layer on Crofer - Possible Fabrication Route: Electroplating of Co (or Co+Mn) followed by oxidative heat treatment - Proof-of-concept via sputtering of Co - EDS/XRD indicate Mn-Co spinel above chromia layer - Thickness: ~2 microns (thinner than slurry-based coatings) - Electroplated samples received and under evaluation 800°C; 100 hours; air ### **Future Work** - Final optimization of slurry-based coating process - Elimination of reducing heat treatment? - Evaluate viability of electroplating approaches - Composition, microstructure, performance - Investigate alternative coating compositions - Eliminate Co? - Assess effects of air/reformed fuel dual atmospheres on performance of interconnect alloys - Develop improved interconnect/electrode interfaces - Reaction-sintered interconnect/cathode contact materials for improved conductivity and strength ## Conclusions - Mn_{1.5}Co_{1.5}O₄ spinel protective coatings are effective in reducing oxide scale growth kinetics and Cr volatility of Cr-containing ferritic stainless steels - Spinel-coated Crofer22APU (22-23% Cr, low Si) demonstrates longterm (>1 year) structural, thermo-mechanical, and electrical stability - No iron oxide nodule formation or other localized attack observed in coated Crofer22APU under dual exposure conditions - Spinel-coated AISI 430 (17% Cr, 0.5% Si) exhibits significant Fe diffusion into coating, and high ASR due to silica subscale formation - Slurry-based fabrication method has been improved; better control of microstructure and thickness - Alternative electroplating-based approaches under investigation # Acknowledgements - ► The work summarized in this paper was funded under the U.S. Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program. - Additional PNNL contributors: J. Coleman, S. Carlson, N. Saenz