SOFC Interconnects & Coatings

J.W. Stevenson, Z.G. Yang (Task Leader), G.G. Xia, G.D. Maupin, X.S. Li, and P. Singh

Pacific Northwest National Laboratory Richland, WA 99352

7th Annual SECA Workshop and Peer Review Philadelphia, PA, September 14, 2006

Objectives and Approach

Objectives

- Develop cost-effective, optimized materials and fabrication approaches for intermediate temperature SOFC interconnect and interconnect/electrode interface applications
- Identify and understand degradation processes in interconnects and interconnect/electrode interfaces

Approach

- Materials and process development
 - Surface modification (Focus of today's presentation)
 - Interconnect/electrode contact materials
 - Alloy development
- Characterization of candidate materials
 - Oxidation tests (including dual atmospheres air vs. moist hydrogen; air vs. simulated reformate), ASR tests, CTE, alloy and scale chemistry via XRD, SEM, EDS, TEM, etc.

Spinel Protective Coatings: Background

- Goal: Cost-effective protective coatings which improve alloy oxidation resistance, mitigate Cr volatility, and minimize contact resistance
- Previous Accomplishments:
 - Studied structure and properties of compositions in $(Mn,Co)_3O_4$ system; selected (Mn_{1.5}Co_{1.5})₃O₄
 - Developed slurry-based fabrication process for fabricating (Mn,Cr)₃O₄ spinel coatings onto FSS interconnects
 - Evaluated performance of coated alloys: oxidation, ASR, coating/alloy interactions
- FY06 Accomplishments:
 - Investigated performance/stability of spinel-coated alloys under SOFC exposure conditions (dual atmosphere)
 - Performed long-term (> 1 year) oxidation tests on coated/uncoated **FSS**
 - Optimized slurry-based fabrication approach

Conclusions

- Mn_{1.5}Co_{1.5}O₄ spinel protective coatings are effective in reducing oxide scale growth kinetics and Cr volatility of Cr-containing ferritic stainless steels
- Spinel-coated Crofer22APU (22-23% Cr, low Si) demonstrates longterm (>1 year) structural, thermo-mechanical, and electrical stability
- No iron oxide nodule formation or other localized attack observed in coated Crofer22APU under dual exposure conditions
- Spinel-coated AISI 430 (17% Cr, 0.5% Si) exhibits significant Fe diffusion into coating, and high ASR due to silica subscale formation
- Slurry-based fabrication method has been improved; better control of microstructure and thickness
- Alternative electroplating-based approaches under investigation

Properties of (Mn_{1.5}Co_{1.5})₃O₄ Spinel

High electrical conductivity ~60 S/cm at 800°C

$$\sigma_{Mn_{1.5}Co_{1.5}O_4} = 10^{3\sim 4}\sigma_{Cr_2O_3}$$

Good CTE match to FSS and anode-supported cells

$$CTE_{Mn_{1.5}Co_{1.5}O_4} = 11.5 \times 10^{-6} K^{-1}, 20 - 800^{o} C$$

- Chemically compatible with contact pastes, cathodes
- Cr-free composition

Fabrication of (Mn,Co)₃O₄ Spinel Protection Layers

Slurry-Based Process

Preparation of materials and slurry

Spray- or dip- coating

Heat treatment in reducing environment (4 hr, 800°C)

Oxidation in air (800°C - Pre-oxidation or in-stack)

$$4Mn_{1.5}Co_{1.5}O_4 \Rightarrow 6Co + 6MnO + 5O_2$$

$$6Co + 6MnO + 5O_2 \Rightarrow 4Mn_{1.5}Co_{1.5}O_4$$

Effect of Coating on Scale Growth

Long-Term Test of AISI 430

Coated

1mMr...yvvv Fe 430 20µm Electron Image 1

800°C - 9,200 h - air

Uncoated

800°C - 8,850 h - air

Effect of Coating on Crofer22APU Scale Growth

Long-Term Oxidation Behavior of Crofer22 APU

Coated

~ 4 µm scale

800°C - 9,200 h - air

Uncoated

~ 14 µm scale

800°C - 8,850 h - air

Electrical Resistance after Long-Term Oxidation Test

Electrical Resistance of Spinel-Coated AISI 430

Results
demonstrate
need for low Si
content in alloy;
AISI 430 has
~0.5wt% Si

Cr Volatility Experiments

Cr release of coated Crofer22APU was <4% of Cr release of uncoated Crofer22APU

Transpiration measurements were carried out at 800°C in air with ~3%H₂O

Performance & Stability under Dual Atmosphere Exposure: *Isothermal Test*

- Mn_{1.5}Co_{1.5}MnO₄ coating on Crofer22APU; prereduced at 800°C for 4 hours
- ► Tested isothermally at 800°C / 1000 hours
- Air (\sim 3%H₂O) vs. Hydrogen (\sim 3%H₂O)
- SEM/EDS: ~2 wt%Fe in coating; no Fe₂O₃ nodule formation or other localized attack

Performance & Stability under Dual Atmosphere Exposure: *Thermal Cyclic Test*

- Mn_{1.5}Co_{1.5}MnO₄ coating on Crofer22APU; pre-reduced at 800°C for 4 hours; pre-oxidized at 800°C for 24 hours
- ► 110 thermal cycles: 8 hours at 800°C, 5°C/min
- Total test duration: 2100 hours
- Air (\sim 3%H₂O) vs. hydrogen (\sim 3%H₂O)
- SEM/EDS: ~2 wt%Fe in coating; no Fe₂O₃ nodule formation or other localized attack

Optimization of Spinel Coating Process

- Transitioning from Solvent-based to Aqueous Slurry System
 - Environmentally friendly; compatible with spray-coating, dip-coating process
- Improved control of coating thickness
 - ~2-20 microns via optimization of slurry viscosity and spray parameters
- Reducing atmosphere heat treatment
 - Typically 800°C, but XRD indicates ~650°C is sufficient
 - Typically 4 hours, but TGA, XRD indicate 1 hour is sufficient
- Investigating elimination of reducing heat treatment via combined slurry/solution-infiltration approach

Growth of Spinel Protection Layers via Oxidation of Co layer on Crofer

- Possible Fabrication Route: Electroplating of Co (or Co+Mn) followed by oxidative heat treatment
- Proof-of-concept via sputtering of Co
- EDS/XRD indicate Mn-Co spinel above chromia layer
- Thickness: ~2 microns (thinner than slurry-based coatings)
- Electroplated samples received and under evaluation

800°C; 100 hours; air

Future Work

- Final optimization of slurry-based coating process
 - Elimination of reducing heat treatment?
- Evaluate viability of electroplating approaches
 - Composition, microstructure, performance
- Investigate alternative coating compositions
 - Eliminate Co?
- Assess effects of air/reformed fuel dual atmospheres on performance of interconnect alloys
- Develop improved interconnect/electrode interfaces
 - Reaction-sintered interconnect/cathode contact materials for improved conductivity and strength

Conclusions

- Mn_{1.5}Co_{1.5}O₄ spinel protective coatings are effective in reducing oxide scale growth kinetics and Cr volatility of Cr-containing ferritic stainless steels
- Spinel-coated Crofer22APU (22-23% Cr, low Si) demonstrates longterm (>1 year) structural, thermo-mechanical, and electrical stability
- No iron oxide nodule formation or other localized attack observed in coated Crofer22APU under dual exposure conditions
- Spinel-coated AISI 430 (17% Cr, 0.5% Si) exhibits significant Fe diffusion into coating, and high ASR due to silica subscale formation
- Slurry-based fabrication method has been improved; better control of microstructure and thickness
- Alternative electroplating-based approaches under investigation

Acknowledgements

- ► The work summarized in this paper was funded under the U.S. Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program.
- Additional PNNL contributors: J. Coleman, S. Carlson, N. Saenz