DELPHI

Development Update on Delphi's Solid Oxide Fuel Cell Power System

Steven Shaffer Chief Engineer – Fuel Cell Development

> Philadelphia, PA 2006 SECA Review Meeting

Acknowledgements

Outline

- Market Opportunities
- Systems Development
- Cell and Stack Development
- Reformer Development
- Cost Analysis
- Summary

SOFC Market Opportunities

Recreational Vehicles Diesel, LPG

Truck and Trailer

Refrigeration

Diesel

US Military JP-8

Development Strategy

Each application adjusted for:

- Fuel Type
- Electrical Configuration
- Application Environment
- User Interface

DELPHI

Outline

- Market Opportunities
- Systems Development
- Cell and Stack Development
- Reformer Development
- Cost Analysis
- Summary

SECA Phase I Starting Point

Delphi Systems Developed During Phase I

SOFC System Mechanization

Integration of SPU 1B SOFC System

SPU 1B SOFC System

SECA Phase I Test Plan

DELPHI

Delphi Phase I Demo System A Test

Set 2 SOFC System on Test

Delphi Phase I System Performance

		Delphi System Performance		
System Metrics	Target	Set 2	Set 3	2 & 3 Combined
Rated Net Power	3 kW	2.08	2.16	4.24
System Efficiency (Peak)	35%	35.1%	38.9%	37.0%
Factory Cost	\$800/kW			\$767
Durability Test	1500 hours	4660	2240	>1500
Temp Cycles	1 cycle	2	2	1
Power Cycles	9 cycles	10	10	10
Net Power Degradation	7% / 1500 hours	4.5%	10.1%	7.3%
Operational Availability	80%	99%	99%	99%

DELPHI

Delphi Phase I Durability Performance Demonstration System

Delphi Phase I Durability Performance SPU 1B – Set 2

Delphi Team SECA Phase I Success

SECA Phase I Goals		Delphi Demonstration Unit		
Power	3 to 10 kW	4.24 kW		
Cost	< \$800/kW	\$767/kW		
Efficiency	35 – 55%	37% LHV- DC		
Degradation	<7%/1500 hours	7.3%/1500 hours		

Delphi SOFC Power System Operation at NETL

Delphi SOFC Power System

 Delphi SOFC Power System operated at NETL Test Facility in Morgantown, WV from May 2, 2006 through June 17, 2006

 Testing conducted at Normal Operating Condition of 1.0 kW, average net electrical output

 610 hours of operation using methane

Laboratory Test Platform

Outline

- Market Opportunities
- Systems Development
- Cell and Stack Development
- Reformer Development
- Cost Analysis
- Summary

Anode Supported Cell Microstructure

- Delphi is fabricating anode supported cells with LSCF cathode
- Current footprint is 140mm x 98mm (active area 105 sq cm)
- Currently producing ~80 cells per week
- A typical microstructure is shown below

Cathode: LSCF (~30 µm)

Interlayer: Ceria Based Layer (~4 μm) Electrolyte: 8 mol. YSZ (~10 μm) Active Anode: NiO – YSZ (~10 μm)

—Bulk Anode: NiO – YSZ (~500 μ m)

DELPHI

Cell Process Development

- Key process development for cells have included:
 - Improved tape characterization, improvement of lamination parameters
 - Electrolyte processing optimization (solids loading optimized)
 - Bi-layer sintering operation development using Design for Six Sigma (DFSS) significantly increased yields
 Bilayer Yields

 Key focus on developing specification for materials, tapes and inks for high volume manufacturing – includes identifying and developing relationship with high volume manufacturing suppliers

 Delphi is also exploring viability of manufacturing cells with larger footprints for application in large power plants for stationary markets

DELPHI

Long Term Stability of Cell Materials

- Button cell tests ongoing for materials development
- Stable performance from LSCF cathode based cell demonstrated
- No degradation in 1500 hours after initial stabilization

Coating Development for Interconnects

 Low cost coating being developed for Cr retention – data shown below on a button cell test with Crofer 22 sample (coated and uncoated) in the cathode environment

Effect of 1.0 ppm H₂S on Standard Cell

- Development ongoing to understand and minimize degradation mechanisms due to H₂S
- Data below shows lowering in power due to addition of 1ppm H₂S in hydrogen at 750°C

Generation 3.1 30-Cell Stack

Generation 3.1 30-cell stack (2.5 liters, 9 Kg)

- 30-cell modules are the building blocks for Delphi's power systems
- These 30-cell modules were integrated into the system and operated to meet SECA Phase 1 targets

Generation 3.1 30-Cell Stack Data

Power

- Data below shows a 30-cell Generation 3.1 stack tested in the stack laboratory (furnace, no insulation)
- Produced max power of 2.62 kW (833 mW/cm²) @ 22.6 Volts with 48.5% H₂, 3% H₂O, rest N₂ (53 % utilization, measured anode outlet temperature: 800°C)
 - Current development ongoing to map cell temperature and optimize conditions for adequate internal cooling of stack for high power operation in systems
- Fuel utilization studies show a 30-cell stack producing 522 mW/cm² @ 75% utilization @ 0.8 V per cell, power density of 470 mW/cm² @ 85% utilization @ 0.8 V per cell

Cassette Variation in a 30-Cell Stack

- Consistent performance between cassettes in a 30-cell stack (@ 60 Amps, 48.5% H₂, 3% H₂O, rest N₂)
 - Voltage difference between best and worst cassette is 0.07Volts

Post-Mortem Analysis of Stacks

- Focus is on understanding degradation and failure mechanisms from autopsy of stacks after long term operation in the system
- Key lessons learned on seals, interconnects and cell durability
- Picture below shows an optical micrograph of center slice of 30-cell stack prior to SEM examination.

Outline

- Market Opportunities
- Systems Development
- Cell and Stack Development
- Reformer Development
- Cost Analysis
- Summary

Fuel Reformer Development

- Delphi is developing reforming technology for Natural Gas, Gasoline and Diesel/JP-8 for SOFC applications
- Two main designs are being developed:
 - CPOx Reformer
 - » Moderate efficiency
 - » Simplicity of design
 - » Not recycle capable
 - Recycle Based (Endothermic) Reformer
 - » High efficiency
 - Use of water in anode tailgas to accommodate steam reforming
 - Recycle capable

DELPHI

CPOx Fuel Reformer Durability on Systems Test – Reformate Composition

Tubular Endothermic Fuel Reformer

Outline

- Market Opportunities
- Systems Development
- Cell and Stack Development
- Reformer Development
- Cost Analysis
- Summary

Delphi Factory Cost Analysis

- Establish a standard Bill of Material
- Perform Component Review Meetings (These meetings identify the differences between prototype and production intent designs)
- Identify and Document Assumptions and Justifications
- Submit Quote Request Forms through Delphi's Supply Management Team for all purchased components
- Estimates were developed for all manufactured and assembled parts using Delphi's extensive manufacturing experience
- Cost analysis audited by outside consultant
- Audited Phase I Cost Analysis submitted to SECA

DELPHI

Cost Breakdown by Subsystem

Outline

- Market Opportunities
- Systems Development
- Cell and Stack Development
- Reformer Development
- Cost Analysis
- Summary

Next Steps:

SECA Phase II:

- Conversion to Line Natural Gas with Fuel Desulfurizer
- System integration of output power electronics including A/C inverter
- Aggressive cost reduction and manufacturability improvement
- Continued improvement in power, efficiency, and reliability
- Diesel-fueled APU System Development
- Improve thermal cycle capability of Stack and System
- Meet Phase II targets

SECA Phase II System Target Metrics

	Current				
Target Metric		SPU 1B	DOE/SECA Ph I (CONTRACT)	DOE/SECA Ph II (CONTRACT)	
"Production" Date		2005	2005/2006	2008	
Fuel		Methane	Methane	Nat Gas	
Net Rated Power	kW	2.2	<mark>3</mark> -10	<mark>3</mark> -10	
Fuel to Electric Efficiency (Peak)	%	38%	35%	40%	
System Start-Up Time (25C - 750C)	min	180	N/A	N/A	
Cycle Durability	cycles	2	1	50	
Operation Life	hrs	4660	1500*	1500*	
		-1.5% / 500 hours	-2% / 500 hours	-1% / 500 hours	

