Durability and Reliability of SOFC Materials and Components

Edgar Lara-Curzio

Materials Science & Technology Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6069

7th Annual SECA Workshop and Peer Review Philadelphia, PA September 12-14, 2006

Acknowledgments

- Rosa Trejo
- Chris Cofer
- Miladin Radovic
- Larry Walker

- US Department of Energy, Office of Fossil Energy, SECA Core Technology Program at ORNL under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.
- NETL project manager Travis Shultz.

Outline

- Introduction
- Time-dependent deformation of Ni-YSZ
- Effect of thermal cycling & thermal aging on the properties and microstructure of SOFC materials
- Other
- Future work

Introduction: Reliability of Engineering Systems

Introduction: Reliability of Engineering Systems

The failure rate of complex systems can be described by the bathtub curve

Focus of today's presentation

- Time-dependent deformation of Ni-YSZ
- Effect of thermal cycling & thermal aging on the properties and microstructure of SOFC materials

Time-dependent Deformation/Dimensional Stability

Is creep deformation good or bad?

Creep deformation could be good

Creep deformation could be bad

most materials exhibit creep deformation when subjected to stresses at high homologous temperatures (T/T_M)

thermal stresses (cte mismatch, temperature gradients)

most materials exhibit creep deformation when subjected to stresses at high homologous temperatures (T/T_M)

- thermal stresses (cte mismatch, temperature gradients)
- mechanical stresses (pressure)

Focus of today's presentation

Let's consider a beam of thickness h, width w and length I.

Let's subject the beam to pure bending within its elastic limit

The maximum strain and stress will be related to the radius of curvature according to:

$$\sigma = E \varepsilon = \frac{E h}{2 R}$$

Now, let's subject the bent beam to temperature T, for a period of time t.

At the end of the thermal treatment, let's remove the bending moment and measure the residual curvature of the beam by laser profilometry.

Time-dependent deformation Ni-YSZ (30% porosity)

machinable alumina fixtures

- 600°C
- 800°C
- 900°C
- 15, 30 and 45 MPa
- 4%H₂+96%Ar

sample dimensions:

- 0.7 mm
- 4 mm
- 40 mm

Time (hrs)	R(t) (mm)
0	3724
1	474
10	436
50	413

- Ni-YSZ exhibits time-dependent deformation when subjected to stress at temperatures between 600°C and 900°C
- Thermally-activated process
- Implications:
 - during service thermal stresses will be relaxed.
 - beware of
 - mechanical stresses
 - redistribution of stresses during cool-down process
- Whenever possible, take advantage of creep deformation to enhance reliability

Focus of today's presentation

- Time-dependent deformation of Ni-YSZ
- Effect of thermal cycling & thermal aging on the properties and microstructure of SOFC materials

• 10-µm thick YSZ layer

40-bilayer 30% pore former

- H₂ (4%)-Ar (96%)
- tubular furnaces

- Residual stresses (X-ray diffraction)
- Elastic modulus
- Biaxial strength
- Density
- Microstructure

0 hrs.

5 hrs.

25 hrs.

0 hrs

5 hrs

12.5 hrs

25 hrs

- Effectively no significant changes in the microstructure of Ni-YSZ after thermal aging or thermal cycling
- Changes in residual stresses?
- Techniques applicable to characterize potential microstructural changes in other components

Other

No effect of hydrogen on fracture behavior of Ni-YSZ

Other

Interfacial fracture properties

InDEC Cell

Other

Interfacial fracture properties

Summary & Future Work

- Degradation mechanisms (electrochemistrythermomechanical-environmental)
- ASME design handbook
- Scaling of SOFCs
- Databases
- Other