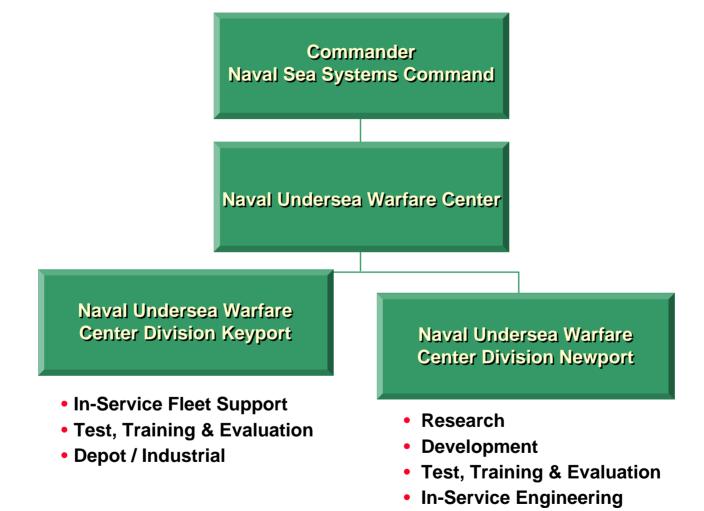


Unmanned Underwater Vehicles

7th Annual SECA Workshop and Peer Review

Dr. Louis G. Carreiro Dr. A. Alan Burke Naval Undersea Warfare Center September 12, 2006


Outline

- I. Introduction to NUWC
- **II.** Background on UUVs
- **III. UUV Energy Requirements**
- **IV. SOFC Stack Testing**
- **IV. System Design**
- V. Related Programs / NAVSEA Fuel Cell Activities
- **VI. Summary**

Part of the NAVSEA Team

Working Together to Deliver the Best Solutions Quickly

Mission Statement

The Naval Undersea Warfare Center is the United States Navy's full-spectrum research, development, test and evaluation, engineering, and fleet support center for submarines, autonomous underwater systems, and offensive and defensive weapon systems associated with Undersea Warfare. (SECNAVINST)

Repository of USW knowledge

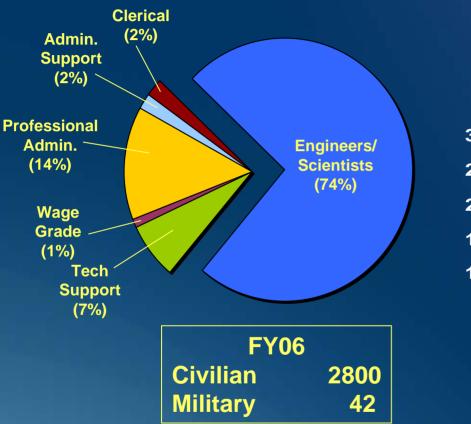
- Highly trained and experienced workforce
- Unique disciplines enable constructive collaboration with private sector and academia
- State-of-the-art tools and facilities

A Navy Core Equity – A National Asset

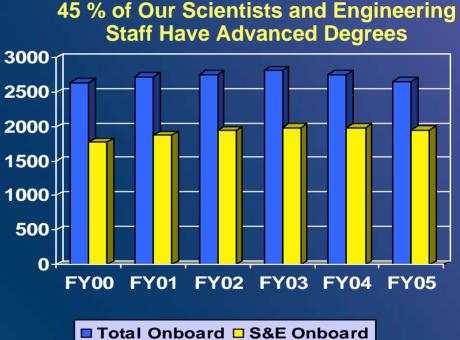
Mission Functions

Products:

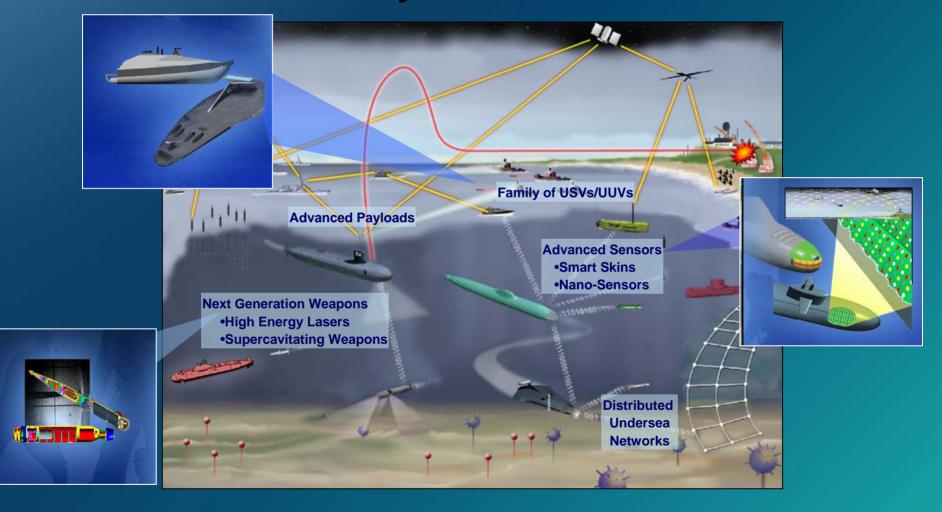
- USW Combat Systems
- Sonar
- Torpedoes, UUVs Targets & Countermeasures
- Launchers
- Electronic Warfare
- Ranges
- Communications
- Periscopes



Services:


- Warfare Analysis
- R&D
- Modeling, Simulation & Analysis
- Technical Design Authority
- Installation
- In-Service Engineering
- Systems Maintenance
- Technical Assistance

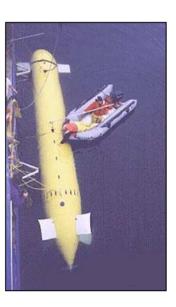
NUWC Workforce


Advanced Degrees

74% Of Our Workforce are Engineers and Scientists Advanced Degrees - 143 PHD's (8%) And 730 Master's (37%)

NUWC's Contribution to the Navy After Next

SEAPOWER 21 – Transformation for the Navy


Nine UUVMP SeaPower 21 Sub-Pillar Capabilities

Force Net ISR [1] Oceanography [5] Communication Navigation Network 	Sea Shield • Littoral Sea Control • ASW [3] • MCM [2] • HLD - AT/FP	Sea Base • Payload Delivery [7]	Sea Strike Information Operations [8] Time Critical Strike (TCS) [9]
Nodes (CN3) [6]	• Inspect/ID [4]		

Class Diameter	Displacement (lbs)	Endurance High hotel Load (hours)	Endurance Low hotel load (hours)	Payload (ft ³)
Man Portable 3-9"	<100	<10	10-20	<0.25
LWV ~12.75"	~500	10-20	20-40	1-3
HWV ~21"	<3000	20-50	40-80	4-6
Large >36"	~20,000	100-300	>>400	15-30 + external stores
In four vehicle classes				

Autonomous Undersea Vehicles

NUWC Demonstration UUV's

REMUS

(50-100 watts)

- Hundreds of In-Water Runs
- **Oceanographic Sensors**
- **Chemical Sensors**
- Acoustic Communications
- Hull Inspection Camera Suites

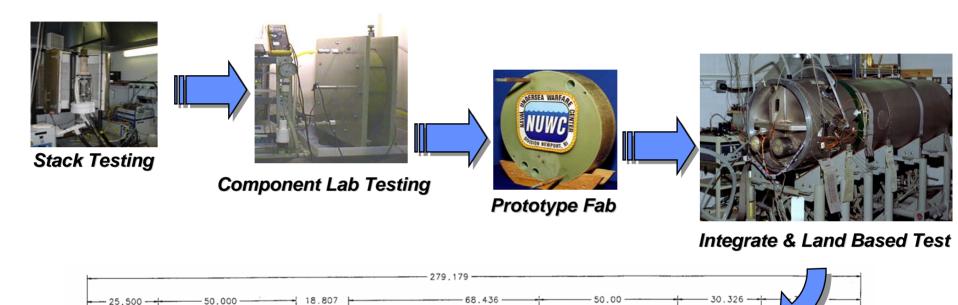
MARV - Mid-sized Autonomous Research Vehicle

- Technology Demonstrations for Various S&T Programs
- Low Speed Control and Hover Payload (Thruster Based) **Demonstrations**
- Imaging Sensor Evaluation
- Homing and Docking Demonstrations (800-1000 watts)

- Acquisition Program Risk Mitigation
- Vision Based Navigation, Camera Suites, Photo Mosaic's
- Side Scan Sonar Imagery
- "Electric Torpedo" Testbed and Weapon Launch from MTV
- Autonomous Controller Experiments

MTV - Manta Test Vehicle

(5-10 kW)


- > 90 In-Water Runs
- Multiple UUV and Weapon Launch
- Advanced ISR Suites RADINT, SIGINT, Optics, IR
- **Deployed ASW Systems**
- Advanced Networked Communications

Nose

Section

UUV Energy Source Development

-22.812 -3 PLCS

Battery

Section

CG/CB

Transducer

Section

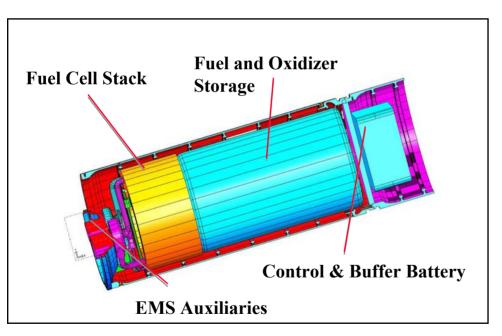
Solid Oxide Fuel Cell High Energy Source for UUV's

Payload

Section

- 132.954

Control Section

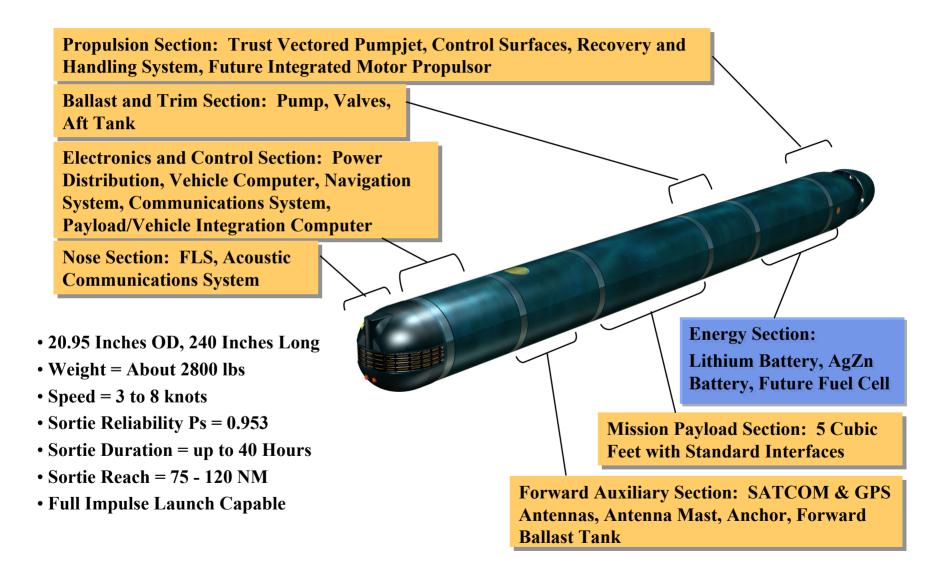

Motor Section Afterbody Section

& TVPJ

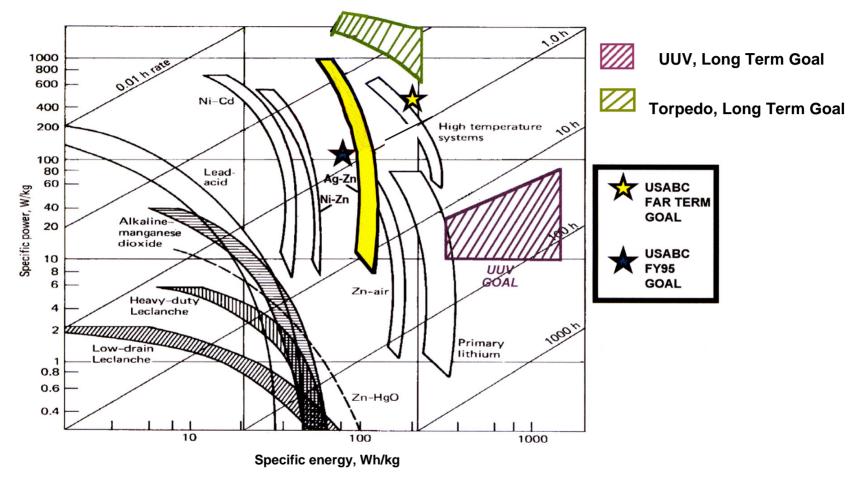
<u>Objective</u>:

Implement <u>air-independent</u> fuel cell technology into UUVs

Potential Benefits:


- Longer UUV missions as a result of higher energy density
- Faster turn-around time between missions (less down time)
- Decreased cost and increased safety versus primary lithium batteries
- Use of logistics fuels or even biodiesel

UUV Energy Section For 21" UUV, available volume / mass: 189 L / 209 kg


Conceptual 21" Diameter Mission Reconfigurable UUV

Torpedo & UUV Power & Energy Needs

SOURCE: David Linden Handbook of Batteries, 2nd ed, 1995

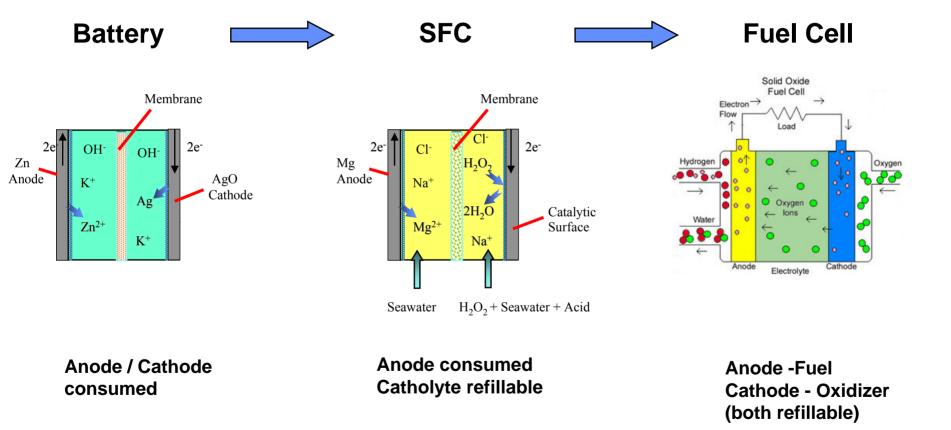
Commercial Sector and Conventional Energy sources will <u>not</u> meet the Navy Torpedo, UUV Future Requirements

UUV Requirements / Restrictions

- Start-up
- Weight / Volume
- Neutral buoyancy
- Gas evolution / Noise signature
- Safety
- Fuel and oxidizer choices
- Refueling
- Logistic Fuels / Sulfur
- Cost
- Temperature
- Endurance

For a planar stack having net output of 2.5 kW:

- 100 cells
- Active cell area 11 cm x 11 cm
- 0.80 volts/cell
- 35 amps @ 80 volts (= 2.8 kW gross power)
- Operating temperature ⇒ 700 to 725°C
- ~30 thermal cycles
- Start-up time (15 to 30 minutes)



Comparison of Energy Sources

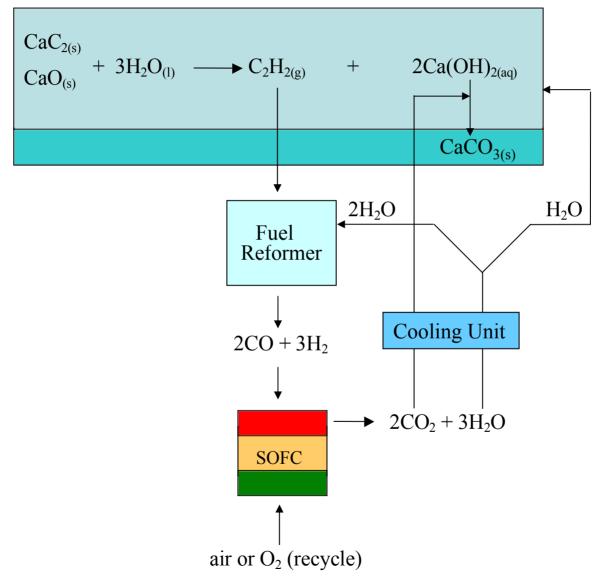
Type of System	Specific Energy, Wh/kg	Energy Density, Wh/L	Max Mission at 2.5 kW, hr	Number of cycles
NiCd	30	75	3	1500
Lead Acid	30	65-95	3	> 300
NiMH	95	330	8	500
AgO-Zn	110	240	9	15
Sec. Li Ion	130	325	11	~2000
Li Polymer ^{*Expected}	210	330	18	> 600
Li-SOCl ₂	~ 450	900-1000	35-38	1
PEM (NaBH ₄ +LOX)	330	340	21	150
SOFC (C ₁₂ H ₂₆ +LOX)	400-450	400-450	30-40	30 (??)

Energy Source Transition

Fuel / Oxidizers

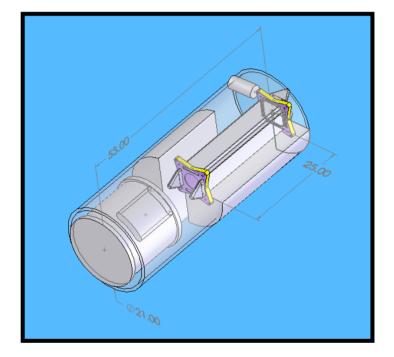
Fuel

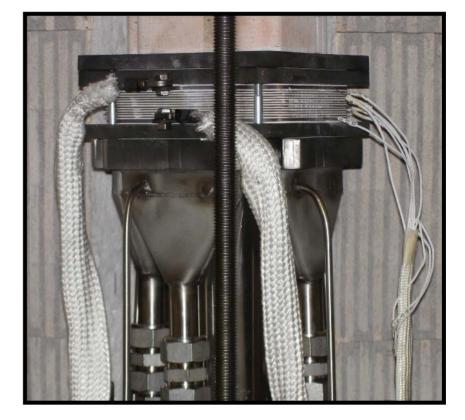
- Hydrogen
 - compressed gas
 - cryogenic liquid
- Hydrocarbons
 - light (C₁ C₄)
 - liquid (JP-8, diesel)
- Hydrogen-containing cpds
 - LiAlH₄
 - NaBH₄
 - Mg₂Ni


<u>Oxidizer</u>

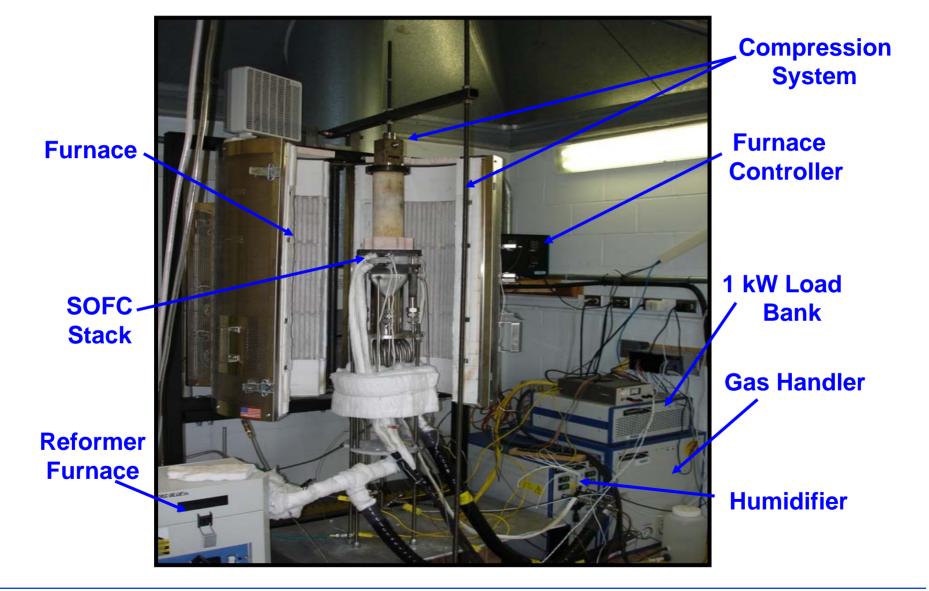
Oxygen

- compressed gas
- cryogenic liquid
- Hydrogen peroxide (H₂O₂)
- Oxygen-containing cpds
 KCIO₄
 - MnO₂




Carbide Fuel System

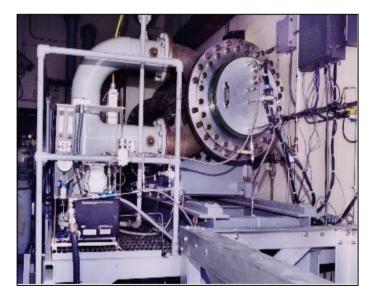
SOFC Stack Testing and System Design



21" UUV Energy Section

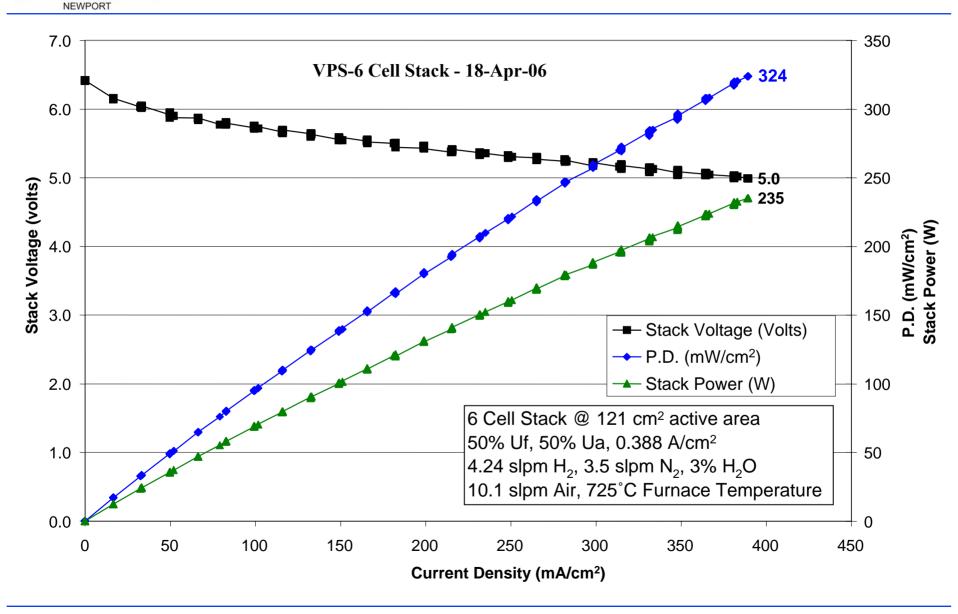
Versa Power Systems (VPS) Solid Oxide Fuel Cell Stack

SOFC Test Stand


NUWC Propulsion Test Facility (PTF) Electric Propulsion Systems Testing

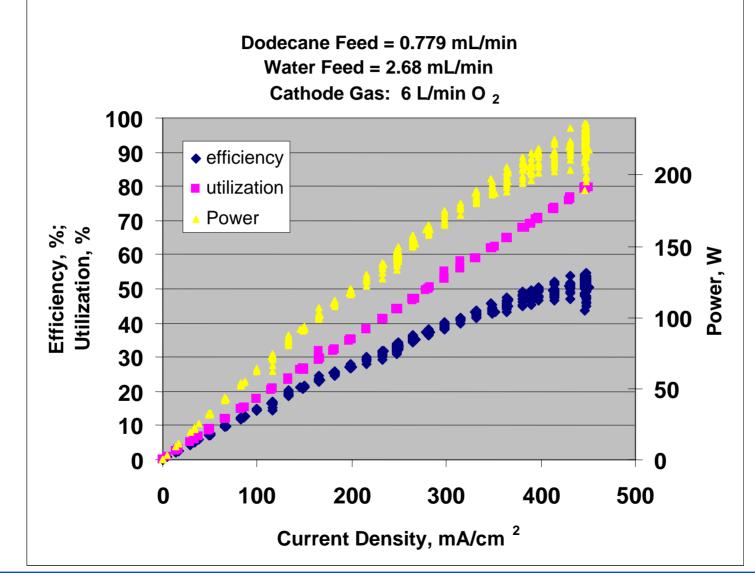
Testing

- Breadboard and brassboard systems
- Primary and secondary batteries
- Electrical components (motors)
- PNTF measure radiated noise in <u>zero</u> sea sate environment

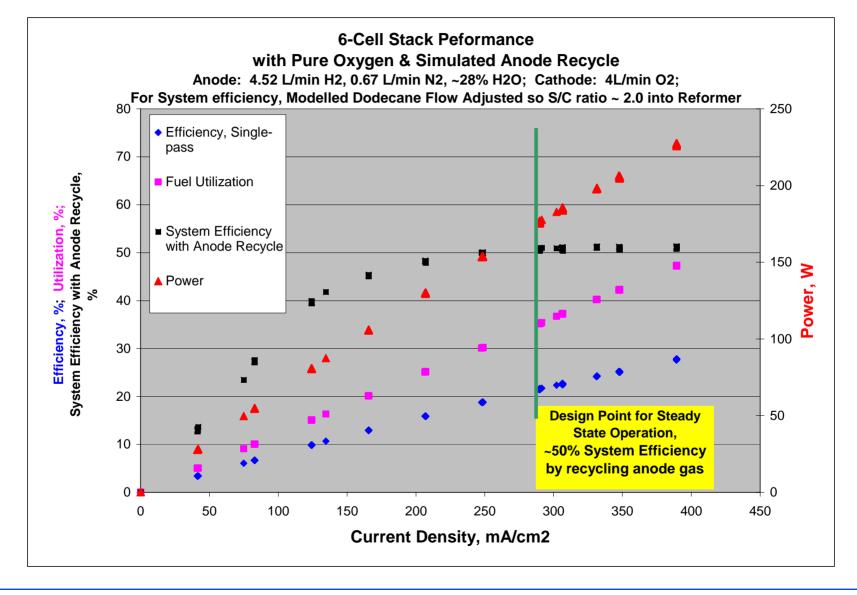


Specifications:

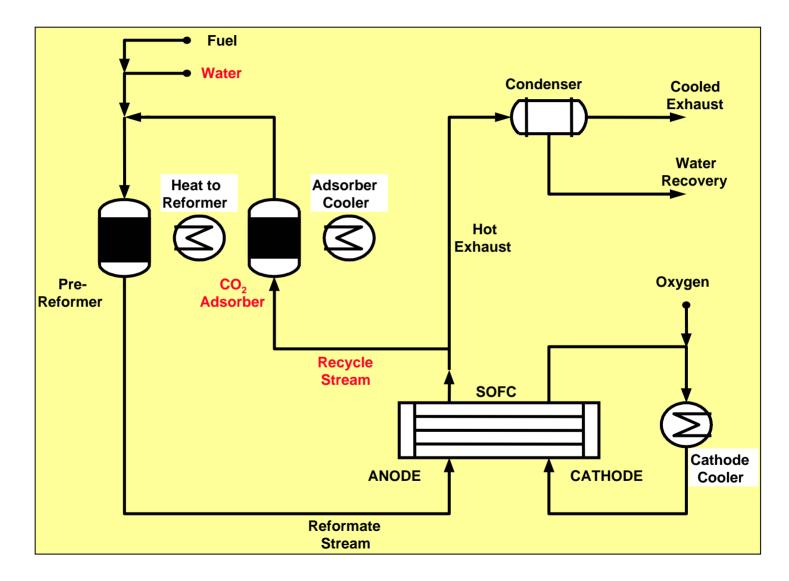
- High power (1 Mw) load bank system
- Motor testing (up to 1000 hp)
- Power supply (450 VDC at up to 2500 Amp)
- Ocean flow simulator/ 4000 gpm highflow cooling loop
- Dedicated monitoring/control systems


Full Power System Performance Evaluation Coupled to Seawater & Vehicle Environment (Prototype & Fleet)

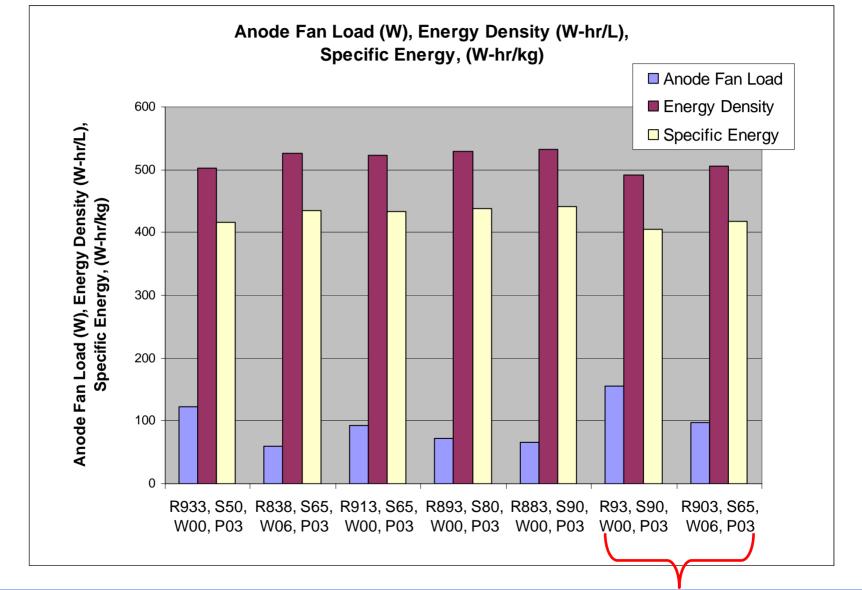
NUWC SOFC Testing - H₂ Performance Testing



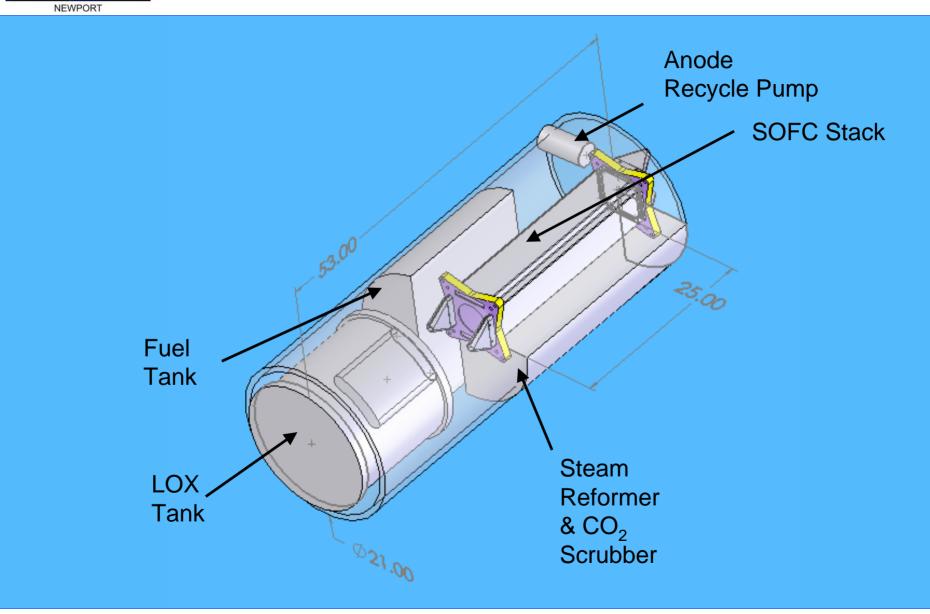
Stack Performance, Dodecane Test, S:C = 3.63



Proposed System Design with Anode Recycle


Parametric Study of SOFC System

Increased Variables	Anode Fan Load	Energy Density	Specific Energy	Parasitic Losses	Total Waste Heat	Total Gas Product	S/C into Reformer	Anode Flow	Cathode Flow
Recycle Fraction	↑	\downarrow	\downarrow	1	1	\downarrow	1	1	\rightarrow
CO ₂ Sorption Percentage	\downarrow	0	0	\downarrow	1	\downarrow	1	\downarrow	1
Water Input	↑	\downarrow	\downarrow	1	1	0	1	1	\rightarrow
System Pressure	↓	\uparrow	1	\downarrow	\downarrow	0	0		\downarrow


Numerous Case Studies to Examine Trends in System Performance

Extended Scenario Studies

WARFARE CENT

Liquid Oxygen (LOX) Storage

German built U212 & U214 submarines already employ Siemens fuel cell systems, which store hydrogen via metal hydrides and oxygen as LIQUID OXGYEN.

Spanish S-80 goes a step further, in that it will be producing LOX on the vehicle itself. UTC providing fuel cell system for this submarine.

LOX is becoming standard for air-independent propulsion (AIP), and it is an area that the U.S. Navy cannot afford to neglect.

50 kg liquid oxygen system

Sierra Lobo successfully demonstrated this technology in a Phase II STTR funded by ONR

- Low temperature pre-reformer (450-700° C)
- Light hydrocarbon slip is okay; SOFC stack can internally reform methane/ethane/butane
- Steam supplied by SOFC exhaust gas also contains H₂, CO, and CO₂ (how will this affect reforming catalyst?)
- Prototype from InnovaTek, Inc. now being tested with dodecane and biodiesel feeds
- Volume = 3-5 L and Mass = 5-10 kg (for 21" UUV)

Anode Gas Recycle Blower

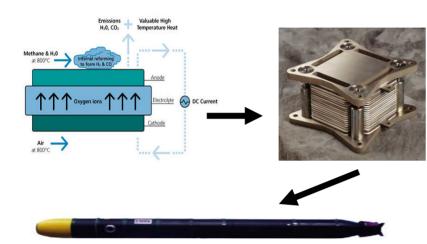
Blower Attributes:

- Inlet T = 600-850° C
- Inlet P is atmospheric
- △P ~ 4-10" water
- 100 SLPM gas flow
- Nominal composition of 46 slpm H₂O, 27 slpm CO₂, 20 slpm H₂, and 7 slpm CO
- η > 40%
- Variable speed control with turn-down ratio of 5 to 2
- Tolerate at lest 30 thermal cycles

Companies Funded under

DoE Phase II SBIR contracts:

- 1. R&D Dynamics
- 2. Phoenix Analysis and Design Technologies


**Proposed phase II prototypes match 21" UUV design goals

Advanced Fuel Cell Research for Weapon Applications

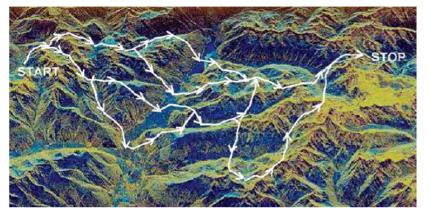
University of Connecticut

Student POC info: Professor: Mentor POC info: ONR Sponsors:

Eric Greene Wilson K. S. Chiu Maria G. Medeiros Michele Anderson David Drumheller

APPROACH

- Develop full cell model
- Characterize/evaluate commercial cells
- Verify and expand model to a system model
- Evaluate cell structure before and after testing for signs of damage (using XRD & SEM)
- Investigate effects of gas mixes on performance to simulate reformed fuel gas
- Develop Transition Technology Candidates


ACCOMPLISHMENTS

- SOFC test stand built and debugged
- Commercially developed cells procured
- 1-D and 2D full cell SOFC model developed and validated with literature and in house experiments
- Hydrocarbon operation established
- Pre and post experiment characterization performed on cells

Logistic Fuel Reforming: A Building **Block Approach to Mechanistic** Structure and Microkinetics

Project Start Date: May 2005

Student POC Info: James Liu **Professor POC Info: Ravindra Datta** Mentor POC Info: Alan Burke **ONR Sponsors:** Michele Anderson **David Drumheller**

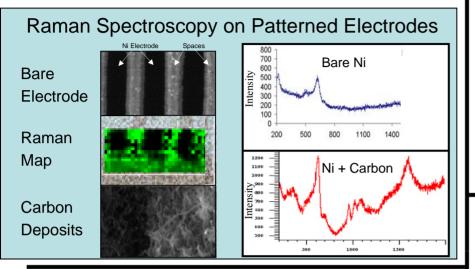
Objectives:

- Determine steam reforming reaction pathways and mechanisms for specific catalyst
- Refine Reaction Route (RR) Graph Theory
- First focus: methane steam reforming (MSR)
- Eventually extend modeling to more complex hydrocarbons, culminating in JP-8 fuel
- Examine autothermal reforming (ATR) that uses pure oxygen feed as opposed to air
- Synthesize and test promising catalyst materials for steam and ATR reforming

Product Schedule/ Milestones

- Determine promising catalyst candidates for MSR based upon RR graph theory and experiments
- Perform MSR and ATR studies

Current Status/ Accomplishments


- WGS analysis completed on various catalysts
- Ongoing MSR studies on supported nickel and ruthenium catalysts
- Developing reaction routes for MSR on nickel catalyst for RR graph theory

Development of Novel Materials for Solid Oxide Fuel Cells That Use Logistic Fuels and Pure Oxygen

Tecl

Objectives:

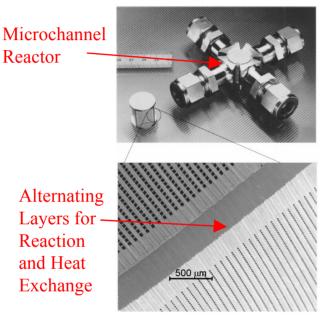
- Develop SOFC technology for use in underwater Naval applications.
- Select sound materials for cell and interconnects.
- Reduce carbon formation at the anode.
 - Determine the species, mechanisms and kinetics of carbon formation
 - Identify the areas on the anode surface that are electrochemically active for the formation of carbon.

Georgia Student POC Info: John Bennett Professor POC Info: Meilin Liu Mentor POC Info: **Alan Burke ONR Sponsors:** Michele Anderson, **David Drumheller**

- Determine the species, mechanisms and kinetics of carbon formation using temperature programmed methods and Raman spectroscopy.
- Determine the areas on the anode that are electrochemically active for the formation of carbon using impedance spectroscopy on patterned electrodes and Raman spectroscopy.

Current Status/ Accomplishments

- Developed a systematic approach for the microfabrication of patterned electrodes of welldefined geometry specific to SOFCs.
- Raman analysis of carbon-deposited Ni electrode shows sp³-bonded carbon that is amorphous.



Safe and Efficient Conversion of Hydrogen Peroxide for Air-Independent UUV Power Sources with Microchemical Systems

Institute of Technology

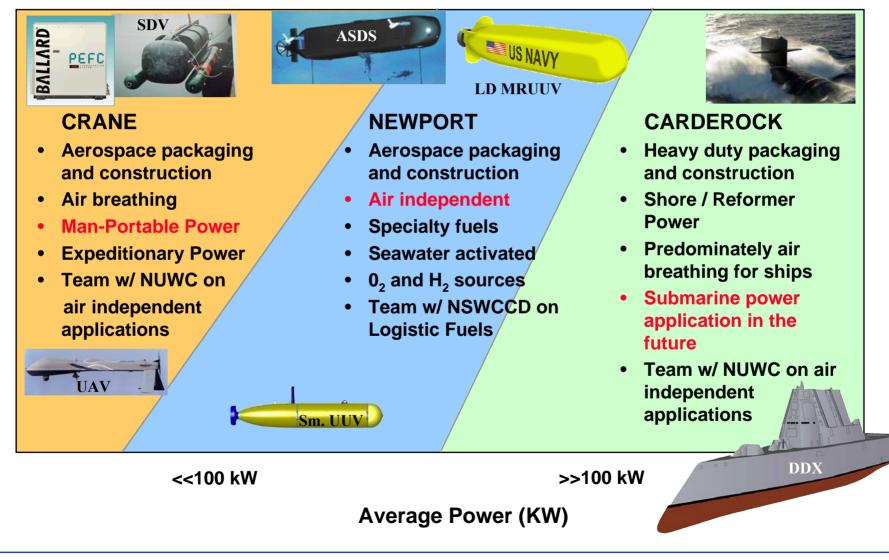
Microchemical System

Objectives:

- Demonstrate high yield, controlled $\rm H_2O_2$ decomposition
- Establish critical design parameters of microchemical $\rm H_2O_2$ decomposition reactor
- Control temperature in the reaction zone
- Determine optimum reactor geometry

Student POC Info:	Elizabeth Lennon		
Professor POC Info:	Ronald Besser		
Mentor POC Info:	Alan Burke		
ONR Sponsors:	Michele Anderson		
	David Drumheller		

Product Schedule/ Milestones


- Determine viable means of reactor & catalyst design by considering various methods (sol-gel, electrodeposition, colloid deposition, etc.)
- Initiate modeling studies to examine heat transfer & fluid dynamics of microchannel reactor operation
- Construct and test reactor under various temperature, [H₂O₂], and catalyst loading

Current Status/ Accomplishments

- Designing experimental reactor
- Investigating H₂O₂ analytical approach
- Simulating reactor using COMSOL Multiphysics

"Swimlanes"- Fuel Cell Programs (Development Only – In Service Per Platform Lead)

DARPA UUV Energy Program

US NAVY DEFINE SCIENCES OFFICE	NUWC POC: Sponsor: DARPA POCs Prime	Maria Medeiros (Program COR) DARPA S: Valerie Browning, Leo Christodoulou
Large-diameter UUVs	Contractors:	SRI, ITN, Contractor#3
Objectives: • Explore high-risk, high-payoff technologies that are likely to be beyond the scope of projects that the Navy will consider under the current UUV Master Plan.		Current Status/ Accomplishments
 DARPA UUV Power Systems program would ena missions that the Navy has yet to consider. 	ble	 Program to start September 2006
 Novel UUV power systems that have the potential demonstrating energy densities in the range of 10 Watt-hours per liter (W-hr/l) to include power plan oxidant storage, power conditioning, controls, modevices, etc. 		

• Oxygen Source LOX? Concentrated H₂O₂? Safety? Availability?

- SOFC reliability multiple mission capability/economics
- Start-up/Pre-heating methods (heating elements? steam? thermal management?)
- Carbon Dioxide Scrubber Design and regeneration without oxidizing other system components (SOFC / reformer catalyst)
- Fuel Recycle System Fans/Blowers to recycle hot gas streams
- Lower BoP (parasitic) power requirements

Summary

- SOFC technology has the potential to greatly increase endurance of UUV missions over current battery technologies.
- Even a minimal thermal cycling capability (10-15 cycles) will make SOFC economically competitive with Li-SOCl₂ batteries.
- Closed system operation of SOFC requires careful thermal management of all system components to avoid overheating.
- Stack performance has been validated while utilizing dodecane reformate and pure O₂. Biodiesel reformate has also been validated. The next step is to show long-term stability and cycling capability.
- NUWC is the Navy lead for testing SOFC stacks, integrating components and designing SOFC systems.

Thank you