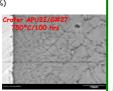
Glass-Ceramic Seals for Solid Oxide Fuel Cells

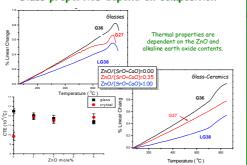
Teng Zhang, Signo T. Reis and Richard K. Brow

7th Annual SECA Workshop September 12-14, 2006 Philadelphia, PA

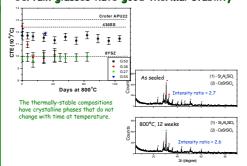
Materials Science & Engineering Department


University of Missouri-Rolla

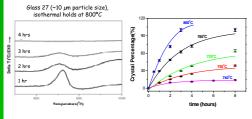
Rolla, MO 65409



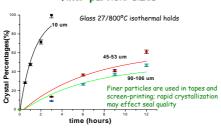
Goal: Develop stable sealing materials for SOFCs


- ZnO-modified alkaline earth invert silicates
 Mixed CaO, SrO, ZnO (45-55 mole%)
- · Mixed CaU, SrU, ZnU (
- · [O]/[Si]>3.3, SiO2<45 mole%
- Minor oxides include Al₂O₃, B₂O₃, TiO₂
- Property design targets:
- Seal/crystallized <900°C
- CTE-match to SOFC components
- Thermomechanically stable at >750°C
- Thermochemically stable in oxidizing and reducing conditions

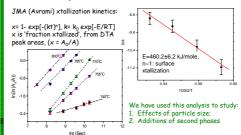

Glass properties depend on composition


Certain glasses have good thermal stability

We study the crystal phase distributions using Rietveld refinement



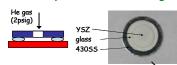
We use DTA to characterize crystallization kinetics



Longer heat treatments leave less residual glass to crystallize on reheating

Crystallization kinetics are enhanced for finer particle sizes

DTA provides quantitative crystallization information



Crystallization kinetics are changed by either particle sizes or 'filler'

Glass sample	E (kJ/mole)	k ₀ (s-1)	n
~ 10μm	460.2±6.2	3.8x10 ¹⁸	0.81±0.31
45-53μm	519.7±10.7	3.7x10 ¹⁹	1.38±0.56
90-106μm	553.9±3.9	1.6 x10 ²²	1.45±0.17
45-53μm with 10 vol % Ni	599.0±20.7	3.1x10 ²⁵	0.99±0.17
45-53μm with 10 vol % YSZ	597.4±46.0	1.0x10 ²⁵	0.74±0.14

Surface crystallization is the dominant mechanism.

Seal performance is being evaluated

- Glass tapes, 200 μm thick (PVB binder, 10 μm glass particles)
- Binder burn-out at 450°C (air)
- · Sealed at 850-900°C (1-2 hours)
- Thermal cycle from 800°C
 Hold 24 hours (forming gas or air)
- · -2°C/min to room temperature
- Test for He-leak (2 hour pressure hold)

Summary of thermal cycling experiments

Sealing materials	Test Conditions	Number of Cycles	Notes
430SS/G50UMR/YSZ	800°C, 24 hours, air	31	Failed; glass prepared at UMR
430SS/G50MOSci /YSZ	800°C C, 24 hours, air	21	Failed; glass prepared by Commercial vendor
430SS/G50UMR/Nickel-YSZ	800°C, 24 hours, air	36	Broke during test; glass prepared at UMR
430SS/G50MOSci/Nickel-YSZ	800°C, 24 hours, air	35	Still on test; glass prepared by Commercial vendor
430SS/G50MoSci-Ag/Nickel-YSZ	800°C, 24 hours, air	2	Still on test; glass prepared by Commercial vendor
430SS/G50UMR/YSZ	800°C, 24 hours, wet forming gas	19	Still on test; glass prepared at UMR
430SS/G50UMR/Nickel-YSZ	800°C, 24 hours, wet forming gas	9	Still on test; glass prepared at UMR
430SS/G50MOSci/Nickel-YSZ	800°C, 24 hours, wet forming gas	12	Still on test; glass prepared by Commercial vendor

Current Research Efforts

- · Hermetic tests at temperature
- Inconel test manifold under construction;
- Scale-up studies of promising compositions
- kilogram melts;
- 'commercial' tape casting/ screen printing;
- 100 mm x 100 mm cells
- · Interfacial reactions under SOFC conditions;
- With ferritic steels and Ni/YSZ anodes
- Glass property optimization
- Viscosity characteristics

Acknowledgements

Many colleagues have contributed their expertise and advice to this project, including

- Xiao Dong Zhou, Harlan Anderson, Clarissa Vierrether, Chandra Ray and Jinbo Yang (UMR)
- · Ron Loehman (Sandia National Labs),
- · Matt Chou (PNNL)

The financial support of the Department of Energy (grant number DE-FC26-04NT4221) is gratefully acknowledged-Ayyakkannu Manivannan, Program Manager.