Separating Rate-controlling Factors in Solid Oxide Fuel Cell Cathodes

Stuart B. Adler
University of Washington

7th Annual SECA Workshop
September 13, 2006

Support
SECA Core Technology Program
NSF: Chemical and Transport Systems, Collaborative Research (DMR-Ceramics),
What factors govern SOFC cathodes?

Why can’t we just measure i-V characteristics vs. T, P_{O_2}, etc., and then fit to a model?

data courtesy of Steve Simner, PNNL
What factors govern SOFC cathodes?

• Many models fit the data equally well.

• Poor understanding of individual rate-controlling processes.

• Convolution of processes.

• Lack of quantitative information about the microstructure.

Why can’t we just measure i-V characteristics vs. T, P_{O_2}, etc., and then fit to a model?

How do we better isolate the various rate-controlling factors?

data courtesy of Steve Simner, PNNL
Outline/Conclusions

• **Isolating O\textsubscript{2} reduction**: studies of La\textsubscript{1-x}Sr\textsubscript{x}CoO\textsubscript{3-\delta} (LSC) thin-film electrodes using nonlinear impedance.
 - **Dissociative adsorption** appears to be rate-controlling on LSC.
 - **Metallic band structure** may be key to faster catalysis.

• **Quantitative analysis of microstructure**: 3D imaging of porous La\textsubscript{1-x}Sr\textsubscript{x}CoO\textsubscript{3-\delta} electrodes using FIB-SEM.
 - **3D microstructural data** may allow quantitative analysis of porous electrodes.
How does one isolate O₂ reduction rates?

This is more difficult to measure than you might imagine...

- Kinetics are difficult to isolate from other rates.
- Systems often restricted to linear driving force.
Studies of Thin-film Mixed-conducting Perovskite Electrodes

- Dense films of $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$ (LSC) made by pulsed laser deposition (500~1000 nm thickness)
 - LSC ($x=0.4$) on polished polycrystalline Gd-doped ceria (Tohoku University)
 - LSC ($x=0.5$) on single-crystal YSZ (University of Houston)

 Resistance dominated by O_2 exchange kinetics

Diffusion is fast (film acts as well-mixed oxygen reservoir)

Interfacial resistance is small (2-3%).
Electrochemical Impedance Spectroscopy (EIS)

\[Z = \frac{\Delta V}{\Delta i} \]

EIS attempts to identify overlapping mechanisms via \textit{time scale}.
Electrochemical Impedance Spectroscopy (EIS)

\[Z = \frac{\Delta V}{\Delta i} \]

\[V_0 e^{-j \omega t} \]

\[i_0(\omega) e^{+j \phi(\omega)} e^{-j \omega t} \]

\[r_{\text{exch}} \sim \frac{1}{R_p} \]

\[\text{Log} \left(\frac{1}{r_{\text{exch}}} \right) \]

\[y = -0.42x + 0.08 \]

\[r_{\text{exch}} \sim P_{O_2}^{1/2} \]

\[\text{Log} \left(P_{O_2} \right) \]
Electrochemical Impedance Spectroscopy (EIS)

\[Z = \frac{\Delta V}{\Delta i} \]

\[V_0 e^{-j\omega t} \]

\[i_0(\omega) e^{+j\phi(\omega)} e^{-j\omega t} \]

\[\delta(P_{O_2}) \]

\[C \sim \delta \frac{\partial \ln \delta}{\partial \ln P_{O_2}} \]
What mechanisms are consistent with \(r_{exch} \sim (P_{O_2})^{1/2} \)?

Limited by consumption of reactive intermediate

\[
r_{ads} = k_1 \left(P_{O_2}^{gas} \right)^{1/2} - \left(f_{O_2}^{solid} \right)^{1/2}
\]

\[
r_{exch} = k_1 \left(P_{O_2} \right)^{1/2}
\]

Limited by formation of reactive intermediate

\[
r_{ads} = k_1 \left(\frac{P_{O_2}^{gas}}{f_{O_2}^{solid}} \right)^{1/2} - \left(f_{O_2}^{solid} \right)^{1/2}
\]

\[
r_{exch} = k_1 \left(P_{O_2} \right)^{1/2}
\]

Same Response!
Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

\[V = V_0 + (V_1 e^{j\omega t} + V_1^* e^{-j\omega t}) + (V_2 e^{2j\omega t} + V_2^* e^{-2j\omega t}) + \ldots \]

\[i = i_0 + \%\cos(\omega t) \]

Current FFT (magnitude)

Voltage FFT (magnitude)
Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

- The magnitude, sign, and phase of the harmonics are tied to nonlinearities of the underlying physics (analogy: music).

- Nonlinear harmonic analysis automatically filters out noise and nonperiodic drifts uncorrelated to the input perturbation.
Sources of Nonlinearity in a Mixed Conducting Oxide Film.

\[r = R_0 \left(P_{O_2}^{\text{gas}}, f_{O_2}^{\text{solid}} \right) \left\{ 1 - e^{-\frac{-\Lambda}{RT}} \right\} \]

\[\delta(f_{O_2}^{\text{solid}}) \] obeys Lankhorst's model

\[\frac{\partial \ln \delta}{\partial \ln f_{O_2}^{\text{solid}}} = \frac{-2}{1 + \frac{4\delta}{g_0 RT}} \]
Sources of Nonlinearity in a Mixed Conducting Oxide Film.

Adsorption: \(O_2 + V_{O_s}^{q_s} + q_{ads}e^- \overset{\dot{\mathcal{E}}}{\rightarrow} (O_2)_{O_s}^{q_{O_2}} \)

Dissociation: \((O_2)_{O_s}^{q_{O_2}} + V_{O_s}^{q_s} + q_{diss}e^- \overset{\dot{\mathcal{E}}}{\rightarrow} 2O_{O_s}^{q_O} \)

Incorporation: \(O_{O_s}^{q_{O}} + V_{O_b}^{q_s} + q_{incorp}e^- \overset{\dot{\mathcal{E}}}{\rightarrow} O_{O_b}^X + V_{O_s}^{q_s} \)

Non-ideal thermodynamics requires that transition states depend on driving force.
Harmonic Response of a $\text{La}_{0.6}\text{Sr}_{0.4}\text{Co}_{3-\delta}$ film on Gd-doped ceria at 725°C vs. P_{O_2}

Model: limited by dissociation of chemisorbed intermediate
Harmonic Response of a $\text{La}_{0.6}\text{Sr}_{0.4}\text{Co}_{3-\delta}$ film on Gd-doped ceria at 725°C vs. P_{O_2}

Possible rate limiting phenomena

- dissociation of chemisorbed intermediate
- molecular adsorption
- atomic incorporation into solid
Harmonic Response of a La$_{0.6}$Sr$_{0.4}$Co$_{3-\delta}$ film on Gd-doped ceria at 725°C vs. P_{O_2}

Model: limited by dissociative adsorption
Harmonic Response of a La$_{0.6}$Sr$_{0.4}$Co$_{3-\delta}$ film on Gd-doped ceria at 725°C vs. P_{O_2}

Thermodynamic factor assuming limited by dissociative adsorption
Physical Interpretation of the Observed Kinetics

“dissociative adsorption”

Adsorption: \(O_2 + V_{O_s}^{q_s} \cdot + q_{ads} e^- \hat{E} (O_2)_{O_s}^{q_0} \cdot \)

Dissociation: \((O_2)_{O_s}^{q_0} \cdot + V_{O_s}^{q_s} \cdot + q_{diss} e^- \hat{E} 2O_{O_s}^{q_0} \cdot \)

Incorporation: \(O_{O_s}^{q_0} \cdot + V_{O_b}^{q_0} \cdot + q_{incorp} e^- \hat{E} O_{O_b}^{\chi} + V_{O_s}^{q_1} \cdot \)

\(q_{diss} = 4, \quad \beta = 1 \)

Implies:
- \(O_2 \) only exists as a molecule, or fully reduced on surface.
- Forward rate obeys mass action (no energy barrier).
Physical Interpretation of the Observed Kinetics

- Reaction is limited by adsorbate lifetime and site availability, not charge transfer.

- Strong Arrhenius dependence corresponds to enthalpy of adsorption (not a true activation barrier).
Physical Interpretation of the Observed Kinetics

- Proposed model explains O$_2$ exchange measurements on bulk La$_{1-x}$Sr$_x$CoO$_{3-\delta}$ over a wide range of x, T and P_{O_2}.

- Metallic band structure appears to be important for stabilizing physisorbed O$_2$, leading to faster rates.

 \[(\text{Pr,Ba})\text{CoO}_y, (\text{Ba,Sr})(\text{Co,Fe})\text{O}_y\]
NLEIS of a Porous $\text{La}_{0.8}\text{Sr}_{0.2}\text{CoO}_3$ Electrode at 725°C vs. P_{O_2}
NLEIS of a Porous La$_{0.8}$Sr$_{0.2}$CoO$_{3-\delta}$ Electrode at 725°C vs. P_{O_2}

- Simple 1-D models don’t explain higher harmonic data very well.

- Many uncertainties related to the details of microstructure.
3D Imaging of SOFC Electrodes with FIB-SEM

NSF Collaborative Research, Ceramics-DMR
Barnett and Voorhees (Northwestern)
Thornton (U. Michigan), Adler (U. Washington)
J.R. Wilson et al., Nature Materials, July 2006
3D Images of a Porous $\text{La}_{0.8}\text{Sr}_{0.2}\text{CoO}_{3-\delta}$ Electrode

Electrode area: $2.23 \text{ um}^{-1} = 22,300 \text{ cm}^2/\text{cm}^3$
3D Images of a Porous La$_{0.8}$Sr$_{0.2}$CoO$_{3-\delta}$ Electrode

Electrode area: $2.23 \ \text{um}^{-1} = 22,300 \ \text{cm}^2/\text{cm}^3$
Extent of electrode/electrolyte contact: 20.5%
3D Images of a Porous La$_{0.8}$Sr$_{0.2}$CoO$_{3-\delta}$ Electrode

Electrode area: 2.23 um$^{-1} = 22,300$ cm2/cm3
Extent of electrode/electrolyte contact: 20.5%
Transport tortuosity factors.
When are macrohomogeneous properties valid?

Juergen Fleig

Must apply models to actual 3D geometry
Baby steps: a cubic electrode particle

\[c_0 \frac{\partial x_v}{\partial t} = -\nabla \cdot N_v \]

\[-n \cdot N_v = \mathcal{R}_0 \left(1 - e^{-\frac{A}{RT}} \right) \]

\[\frac{RT}{4F} \ln \left(\frac{f_{O_2}(x_v)}{P_{O_2}} \right) = \varphi \cos(\omega t) \]
Concentration Profiles of Increasing Perturbation Frequency

\[\sigma = 0.1 \]

\[\sigma = 100 \]

\[\sigma = 1000 \]

\[\sigma = 10000 \]
Higher Order Harmonic Data

Nyquist Plot: 1st Harmonic Response

2nd Harmonic

3rd Harmonic
Conclusions

• By resolving both timescale and nonlinearity, NLEIS appears to be a promising technique for analyzing electrode kinetics.

• For metallic La$_{1-x}$Sr$_x$CoO$_{3-\delta}$, oxygen exchange appears to be limited by dissociative adsorption onto limited vacant surface sites.

• More surface vacancies, metallic band structure may be key to improved kinetics.

• 3D microstructural data stands to allow these methods to be extended to real microstructures.
Acknowledgements

University of Washington
Jamie Wilson (PhD student, ChE)
Yunxiang Lu (PhD student, ChE)
Dan Schwartz (Faculty, ChE)

Tohoku University
Maya Sase (PhD student, Tohoku)
Tatsuya Kawada (Faculty, Tohoku)

Northwestern/University of Michigan
James Wilson (PhD student, Mat Sci)
Scott Barnett, Peter Voorhees (Faculty Mat. Sci)
Roberto Mendoza, Katsuyo Thornton (U. Michigan)

Support
SECA Core Technology Program
NSF DMR-Ceramics, CTS
Thank You
NLEIS measurements

\[V(t) \rightarrow I(t) \rightarrow \text{Potentiostat} \]

\[I(t) \rightarrow V(t) \rightarrow I(t) \]

\[\text{Waveform Generator} \]

\[\text{High-speed Digitizers} \]

\[\text{FFT} \]

\[V_0(\omega), V_1(\omega), V_2(\omega), V_3(\omega), \ldots \]
Power Series Expansion of Harmonic Response

\[\hat{V}_1(\alpha, \omega_0) = \alpha \hat{V}_{1,1}(\omega_0) + \alpha^3 \hat{V}_{1,3}(\omega_0) + \alpha^5 \hat{V}_{1,5}(\omega_0) \]

\[\hat{V}_3(\alpha, \omega_0) = \alpha^3 \hat{V}_{3,3}(\omega_0) + \alpha^5 \hat{V}_{3,5}(\omega_0) \]

Least Squares Fit

\[\hat{V}_k = \overline{V}_k + j\tilde{V}_k \]

\(\overline{V}_k \) = Real Part of the Response

\(\tilde{V}_k \) = Imaginary Part of the Response

First Harmonic:

Third Harmonic:
Motivation

• O$_2$ reduction remains a source of polarization and degradation in solid oxide fuel cells.

• To improve cathodes, we must better understand the factors limiting them.