Objectives

- Develop cost-effective, optimized materials for intermediate temperature SOFC interconnects and interconnect/electrode interface applications.

- Identify and understand degradation processes in interconnects and at their interfaces with electrodes and seals.
Approach

Oxidation resistant alloys:

\[
\begin{align*}
\text{Alumina–forming alloys} & \quad \text{Chromia-forming alloys} \\
\text{Fe-Ni-base superalloys} & \\
\text{Face-centered-cubic (FCC)} & \quad \text{Body-centered-cubic (BCC)} \\
& \quad \text{e.g. austenitic Fe-Cr, Ni-Cr-base alloys}
\end{align*}
\]

- Screening studies of conventional and newly developed alloys
- Investigation and understanding of degradation in metallic interconnects and at their interfaces under SOFC operating conditions.
- Materials development
 - Surface modification
 - Bulk alloy development
 - Electrode/interconnect interfaces

Focus Areas & Accomplishments

Ferritic stainless steel interconnects with spinel protection layer
- Thermally grown (Mn,Co)$_3$O$_4$ spinel protection layers on FSS;
- Characterized thermally, electrically, and electrochemically.

Austenitic-base alloys and laminated, composite interconnect structures
- Developed Ni-base alloys for improved scale properties.
- Investigated the feasibility of cladding approach for fabrication of laminated, composite metallic interconnects.

Interactions and contact layer b/w cathode and interconnect
- Screening-studied perovskites as an electrical contact layer and interactions b/w metallic interconnects and the perovskites;
- Developed new electrical contacts and methods of making them.

Degradation of metallic interconnects under SOFC operating conditions
- Investigated oxidation behavior of metals and oxidation resistant alloys under dual exposures;
- Carried out advanced analyses to gain fundamental understanding.
Focus Areas

- Ferritic stainless steel interconnect with spinel protection layer
- Austenitic-base alloys, and laminated, composite interconnect structures
- Interactions and contact layer b/w cathode and interconnect
- Degradation of metallic interconnects under SOFC operating conditions
Protection Layer: The Need

To improve long term scale structural and electrical stability.

Extrapolation of the 2,000 h test gives an ASR about 200 mΩ.cm² after 40,000 h.

After 6 months, 100 cycles, 800°C:

Protection Layer: The Need

To mitigate or prevent Cr migration and potential poisoning.

Crofer22 APU, 800°C, in air

In-situ X-Ray Diffraction Analysis

M: Fe-Cr substrate
C: Cr₂O₃
S: (Mn,Cr)₃O₄ spinel

Development of (Mn,Co)₃O₄ Spinel Protection Layer

Why (Mn,Co)₃O₄ spinel?
- Electrical conductivity:
 \[\sigma_{(Mn,Co)₃O₄} = 10^{3-4} \sigma_{Cr₂O₃} = 10^{2-3} \sigma_{MnCr₂O₄} \]
- Appropriate CTE:
 \[CTE_{Mn₃Co₃O₄} = 11.5 \times 10^{-6} K^{-1}, 20 – 800^\circ C \]
- Non-Cr containing: Cr-containing oxides will release Cr
- Flexibility of fabrication: THERMAL GROWTH

Why thermal growth?
- Strong adherence to the substrate;
- Introduction of porosity for strain tolerance;
- Improved thermomechanical stability;
- Cost effectiveness.

Approach

Preparation of (Mn,Co)₃O₄:
SS or GNP

Solution based coating

Heat-treated in reducing environments

Thermally grown during heating in oxidizing environments or during first SOFC stack heating

Thermal Growth of Mn$_{1.5}$Co$_{1.5}$O$_4$ on FSSs

Reduction

In H$_2$/Ar+3% H$_2$O, 800°C, 24h

\[
[MnCO_3O_4]_{cubic} + 3H_2 \uparrow \Rightarrow 2Co + MnO + 3H_2O \uparrow
\]

\[
[Mn_CoO_2]_{tet} + 2H_2 \uparrow \Rightarrow Co + 2MnO + 2H_2O \uparrow
\]

4Mn$_{1.5}$Co$_{1.5}$O$_4$ + 5H$_2$ \uparrow \Rightarrow 6Co + 6MnO + 5H$_2$O \uparrow

Oxidation

Air+3% H$_2$O, 800°C, 100h

4Co + 2MnO + 3O$_2$ \uparrow \Rightarrow 2[MnCO$_3$O$_4$]$_{cubic}$

2Co + 4MnO + 2O$_2$ \uparrow \Rightarrow 2[Mn$_2$Co$_3$O$_4$]$_{tet}$

6Co + 6MnO + 5O$_2$ \uparrow \Rightarrow 4Mn$_{1.5}$Co$_{1.5}$O$_4$
Contact ASR w & w/o Protection Layers

\[ASR_{cathode/interconnect} = \Phi(scale, contacts, reactions) \]

- **Crofer22 APU without spinel protection layer**
- **AISI430 with spinel protection layer**
- **Crofer22 APU with spinel protection layer**

Graph:
- Time (h) vs. ASR (mohm.cm²)

Diagram:
- Interconnect
- Screen-printed cathode
- Sintered, dense LSF
- Electrical contact
- Interconnect

- **6.5 PSI Load**
- **500mA.cm⁻²**
- **LSCM electrical contact, 800°C, air**

Pacific Northwest National Laboratory
U.S. Department of Energy
Six Month Thermal Cycling Test

IRU test: 800°C, air, cycling from 80-800°C, 125 cycles plus 4 times of power failure.

Test was started in an isothermal mode on May 24, 2004; cycling began 300 h later on June 6, 2004.

As of Nov. 24, 2004, ASR slowly dropped to 14.3 mohm.cm² after enduring four months testing and three power failures.
Improved Surface Stability

Crofer22 APU
Contact layer
LSF substrate
LSF cathode
Protection layer

[Images of microscopic sections showing layers and schematics of the Crofer22 APU structure.]
Effective Cr-Barrier

No Cr migration across the spinel protection layer after six months of heating and cycling.

Summary

- $\text{Mn}_{1.5}\text{Co}_{1.5}\text{O}_4$ spinel protection layers can be thermally grown on ferritic stainless steel interconnects.

- The thermally grown $\text{Mn}_{1.5}\text{Co}_{1.5}\text{O}_4$ spinel protection layer:
 - improved surface stability
 - minimized contact resistance
 - prevented Cr migration

- The spinel protection layer demonstrated excellent long-term stability.
Focus Areas

- Ferritic stainless steel interconnect with spinel protection layer
- Austenitic-base alloys, and laminated, composite interconnect structures
- Interactions and contact layer b/w cathode and interconnect
- Degradation of metallic interconnects under SOFC operating conditions
Modification of Haynes 230

Evaluation:
- Oxidation and scale growth in moist air as well as under dual environments
- Scale constitution and structure
- Scale electrical conductivity
- Thermal expansion

Chemical Composition

<table>
<thead>
<tr>
<th>Element</th>
<th>Heat No. 8305 7804</th>
<th>Heat No. 1% Mn EN1304-4-812</th>
<th>Heat No. 2% Mn EN1404-4-813</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.34</td>
<td>0.31</td>
<td>0.38</td>
</tr>
<tr>
<td>B</td>
<td>0.002</td>
<td>0.005</td>
<td>0.006</td>
</tr>
<tr>
<td>C</td>
<td>0.100</td>
<td>0.111</td>
<td>0.095</td>
</tr>
<tr>
<td>Co</td>
<td><5.0</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cr</td>
<td>22.45</td>
<td>20.96</td>
<td>20.73</td>
</tr>
<tr>
<td>Cu</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>Fe</td>
<td>1.54</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>La</td>
<td>0.017</td>
<td>< 0.005</td>
<td>< 0.005</td>
</tr>
<tr>
<td>Mn</td>
<td>0.52</td>
<td>1.08</td>
<td>2.06</td>
</tr>
<tr>
<td>Mo</td>
<td>1.42</td>
<td>2.02</td>
<td>1.95</td>
</tr>
<tr>
<td>Ni</td>
<td>Bal</td>
<td>60.67</td>
<td>59.49</td>
</tr>
<tr>
<td>P</td>
<td>0.005</td>
<td>0.005</td>
<td>0.006</td>
</tr>
<tr>
<td>S</td>
<td>< 0.002</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>Si</td>
<td>0.38</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>Ta</td>
<td>< 0.100</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Ti</td>
<td>< 0.01</td>
<td>< 0.010</td>
<td>< 0.010</td>
</tr>
<tr>
<td>W</td>
<td>14.23</td>
<td>13.62</td>
<td>14.34</td>
</tr>
</tbody>
</table>

Alloys were made at Haynes International Inc.
Scale structure similar to Crofer, i.e. $(\text{Mn,Cr})_3\text{O}_4 + \text{Cr}_2\text{O}_3$; Mn addition increased scale growth, but still better than Crofer; Superior oxidation resistance under dual environments.
Properties of M Alloys

- (Mn, Cr)\textsubscript{3}O\textsubscript{4} spinel help improved scale conductivity.
- Mn addition increased scale growth rate and thus the scale electrical resistance.

CTE of M alloys is comparable to Haynes230 and higher than that of ceramic cells.
- Mn addition slightly increased CTE.
Laminated, Composite Interconnect Structures via Cladding*

Clad Metal:
- A layered, composite metallic material
- Cost-effective and widely used in Industries as well as in our daily life

Clad Metal for interconnect applications
- Integrate advantages of different alloys, while avoiding disadvantages.
 - Solve the issue of thermal expansion mismatch;
 - Optimize the interconnect mechanical and structural stability;
 - Make more cost-effective.
- Allow to address cathode- and anode-side issues separately;
- Mass production and very cost effective.

Collaboration with Leigh Chen, Engineered Materials Solutions Inc.
Proof-of-Concept: Haynes230||AL453||Haynes230

- After rolling
- After heat treating

The proof of concept work proved the viability of cladding FSS with Ni-based alloys and another piece of FSS;

The cladded structures were stable during a subsequent heat treatment.
Thermal Expansion of Clad Metals

Thermal expansion of clad metals, compared to Haynes 230 and Al453

CTE* of the clad metal in comparison with that of Haynes230 and AL453

The cladding is a viable approach to modify the thermal expansion of metallic interconnect and help improve its cost-effectiveness.

Chen, Yang, Jha, Xia, Stevenson, J. Power Sources, in press (2005).
Summary

The austenitic Ni-Cr-base alloys can be modified for improved properties for SOFC applications.

The initial work demonstrated that cladding is a viable approach to fabricate laminated, composite interconnect structures that integrate the advantages of different alloys, while avoiding their disadvantages.
Focus Areas

- Ferritic stainless steel interconnect with spinel protection layer
- Austenitic-base alloys, and laminated, composite interconnect structures
- Interactions and contact layer b/w cathode and interconnect
- Degradation of metallic interconnects under SOFC operating conditions
Contact Layers

Functions
- Promote electrical contact
- Facilitate stack assembling
- Act as a buffer zone to trap Cr

Materials requirements
- High electrical conductivity
- Chemical compatibility
- Thermal expansion matching
- Thermochemical stability
- Low cost
Contact Resistance

\[
ASR_{contact} = \Phi \left(\begin{array}{l}
Scale: \text{conductivity, growth-rate;}
\text{contact: area, conductivity;}
\text{reactions: scale | contact | electrodes}
\end{array} \right)
\]

- SrCrO₄ can be formed via both solid-solid and solid–gas reactions.
- LSM and LSCM facilitate (Mn,Cr)₃O₄ spinel formation.

Yang, Xia, Singh, Stevenson, J. power Sources, accepted (2005).
Performance of Newly Developed Contacts

- Combination of the spinel protection layer and a newly developed contact led to a significantly minimized contact ASR.

IRU test: LSF cathode; Temperature: 800°C

LSF cathode and bare Crofer22 APU as interconnect

- Crofer22 APU with thermally grown spinel protection layer

![Graphs showing ASR (ohm.cm²) over time for different conditions.](image-url)
Summary

- It is desirable to have an electrical contact layer to minimize the contact resistance between oxide cathodes and metallic interconnects.

- Screening study on perovskite contacts indicated that the contact ASR depends on scale conductivity, contact area, and conductivity of contact materials, as well as interactions between interconnects and electrical contacts.

- The combination of spinel protection layer and the newly developed contact materials demonstrated a very low contact ASR.
Focus Areas

- Ferritic stainless steel interconnect with spinel protection layer
- Austenitic-base alloys, and laminated, composite interconnect structures
- Interactions and contact layer b/w cathode and interconnect
- Degradation of metallic interconnects under SOFC operating conditions
Oxidation Behavior of Alloys under Interconnect Dual Exposures

- Oxidation study has been a common area of interest, but typically in a single exposure.
- Oxidation behavior under interconnect dual exposures can be very different from that in a single exposure.
- Understanding helps develop robust materials.

Materials studied:

- NiBS
 - Haynes 230-22%Cr
 - Hastelloy S-17%Cr
 - Haynes 242-9%Cr
 - Pure Ni, Ag, etc.

- FeSS
 - E-brite-27%Cr
 - Crofer22-22%Cr
 - AISI430-17%Cr

Variables:

- Alloy composition
- Thermal history: isothermal vs. cycling
- Fuels: Hydrogen & Reformates

Anomalous Oxidation of Alloys under Dual Exposures: A Summary

Ferritic stainless steels (FSS):
FSS demonstrate anomalous oxidation behavior under dual exposures. Depending on alloy composition, thermal history, and surrounding environment, the anomalous oxidation can lead to a localized attack by formation of hematite nodules.

Ni-Cr-base alloys (NCA):
NCA also demonstrate anomalous oxidation behavior under dual exposures. The anomalous oxidation usually leads to less defects and a better scale adherence.
The anomalous oxidation of metals or alloys under dual exposures is due to the hydrogen transport from the fuel side to the airside.

Both a hydrogen and a water vapor gradient can contribute to the hydrogen flux and affect the scale growth at the airside.

Mechanistic understanding is an ongoing work: how the hydrogen/proton interacts with scale oxides and affects the scale composition, structure and its properties.
Future Work:

Surface modification of metallic interconnects
- Study spinel materials to optimize protection layers for best performance;
- Explore different approaches and search more economic ways for mass production.

Development of electrical contact layers
- Continue to study interfacial interactions and ASR;
- Develop and optimize contact layer materials for further improved performance.

Alloy development and optimization of clad interconnect structures
- Continue to develop and optimize bulk alloys for improved scale properties.
- Optimize laminate, composite interconnect structure and compositions.
- Study interdiffusion and predict life via modeling.

Study of oxidation behavior and scale properties under dual exposures
- Mechanistic understanding: Interaction and transport of H/H⁺ at the metal/oxide interface and in the oxide scale; their effects on defect structure, transport properties, scale growth.
- Oxidation behavior of alloys under the reforming gas/air dual exposures.
- Study effects of dual exposure and electrical field on scale properties.
Acknowledgements

The work summarized in this paper was funded under the U.S. Department of Energy’s Solid-State Energy Conversion Alliance (SECA) Core Technology Program.

The authors wish to thank Wayne Surdoval, Lane Wilson, Travis Shultz and Don Collins (NETL) for their helpful discussions regarding this work.

Metallographic preparation and SEM: Jim Coleman, Shelley Carlson, Nat Saenz.