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Outline

s Cathodes

* | SF-based Cathodes

— Current Collector Effects
— Performance Degradation

* | SM-based Cathodes

— Optimization of Performance
— Joint GE-PNNL-ANL Cr Degradation Study

= Anodes
* Current Collector/Contact Materials Development



Button Cell Experimental Set-Up
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Effect of Current Collector on LSF Performance
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Anode supported cells tested on 50/50 H,/N,; 750°C; 0.7 V



LSF - Platinum
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Pt migrates from the current collector to the LSF-SDC interface.

Increased ohmic resistance possibly associated with removal of Pt from the Pt-cathode
interface and increased contact resistance.



LSF - Platinum (Possible Scenario)

= PtO, evaporates and deposits as Pt metal at reduction sites at the LSF-
SDC interface

PtO,,, +4e +2VS* — Pt +20;

2(9)

= Pt deposition may catalyze the oxygen reduction reaction, and enhance
cell performance.

= Consistent with other studies detailing enhanced catalytic activity of
SOFC cathodes by purposefully adding Pt or Pd at the cathode-
electrolyte interface.



L SF - Silver
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= Silver deposition different to Pt =» Ag not limited to interface — may indicate a different
mechanism.

= Ag (and possibly AgO) vaporize and deposit at the LSF-SDC interface and within the
SDC pores.



Volatility of Noble Metal Species
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LSF - Gold
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= No detectable gold migration to the LSF-SDC interface or within the bulk cathode.

= Cell indicates continued degradation during 500 hour test.

= Only slight increase in ohmic resistance — Au-cathode contact maintained due to lack of Au
volatility



Effect of Current Collector on LSF Performance
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Anode supported cells tested on 50/50 H,/N,; 750°C; 0.7 V
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LSF Degradation — Role of Ni?

s the degradation of LSF (with inert Au current collector) intrinsic to LSF or due to the
combination of LSF with an anode-supported cell geometry =»Ni migration.
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Pt at LSF-SDC interface (for cells that show conditioning/stability) contains higher Ni levels
than surrounding materials =» Pt may act as a Ni getter.

Potential degradation mechanism involving Ni has not been established




LSM-20 Optimization

= Variables include:
A/B ratio — 0.99 and 0.95
Cells prepared with and without a ceria interlayer

B-site dopant additions.
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Additions of ceria or YSZ to form a composite active cathode layer.
Microstructure: Sintering temperature, pore former addition, starting particle size.
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Cr Degradation Study

s Collaboration between GE, PNNL, & ANL

m  Objectives

* Determine under what conditions, if any, chromium transport
has a detrimental effect on LSM-based cathodes

* Determine if the observed Cr transport is predominantly vapor
phase, solid state or both

* Determine Cr compounds formed at cathode/electrolyte
interface and cathode/interconnect interface regions

* Correlate Cr observed at interfaces vs. observed performance
degradation (if any)

m Test Conditions
* InDEC cells w/ LSM-YSZ cathodes: 700, 800°C; 1000 hours

* Crsources evaluated:
— E-Drite flow field (ANL, GE)
— Vapor phase from outside fixture (PNNL)
— Transpiration experiments (PNNL)



Fixture for Cr Degradation Tests
V' e




Anode Development - Introduction

= Ni-based anodes offer excellent performance in clean
hydrogen or reformed hydrocarbon fuels

* Challenges include redox stability, hydrocarbon tolerance (coking,
thermal gradients), sulfur tolerance

= Ceramic anodes (doped SrTiO,/CeO, mixtures) combine high

electrocatalytic activity for fuel oxidation with redox stability,
tolerance of hydrocarbons, and tolerance of sulfur

* Electronic conductivity, redox stability provided by titanate, activity
for fuel oxidation provided by ceria

* Challenges include relatively low electronic conductivity (compared

to Ni-based anodes), processing temperature limitations (reactivity
and microstructure coarsening at high processing temps).



“Traditional” Anode / Interconnect Interface

*Need to establish stable, conductive interface between anode
and alloy interconnect

*Ni-based anodes allow establishment of metallurgical bond
between anode and interconnect

*Typical approach: Bond Ni Mesh to alloy interconnect; Apply
NiO contact paste between cell and mesh/interconnect during
stack fabrication (850-950°C)

Interconnect
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Ceramic Anode / Interconnect Interface

*Need to establish stable, conductive interface between thin active ceramic
anode and alloy interconnect

*Pt too expensive

*One option: Ni based contact material - high conductivity - may retain S
tolerance (not concerned with S poisoning away from active anode) -
probably lose redox, hydrocarbon tolerance

*Graduated approach to improve bonding between Ni and anode

interconnect
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950°C —* contact material - Ni
1000°C  —» current collector Ni/ (Sr,.La)TiO,
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Electrolyte-supported cell operation with Pt/Pt and
NI-LST/Ni current collector/contact paste
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160 um YSZ electrolyte-supported cell
(La,Sr)TiO,- Ce(La)O, anode and LSF20 cathode with SDC interlayer;
Fuel: H,/H,0=97/3; Oxidant=air




SEM image of a tested titanate/ceria ceramic anode w/
Ni-titanate (60/40 v%) current collecting layer

CC layer
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Summary

m LSF-based cathodes

* Considerable performance disparity depending on the type of noble metal current
collector used.

* The LSF-Au configuration is most representative of true LSF performance, and reveals
LSF instability.

* |mpact of Ni migration (from the anode into YSZ, SDC and LSF layers) on cathode
degradation is being examined.

n LSM-based cathodes

* Encouraging long-term stability data but modest power densities.
* Cr Degradation study in progress — GE, PNNL, ANL

= Ceramic anodes
* Optimization of Ni-based current collection / contact layers in progress




Future work

= Cathode:
* Evaluate LSF degradation mechanisms, including role of Ni
* Optimize LSM-based cathodes
* Joint GE-PNNL-ANL Cr poisoning study

= Anode:

* Develop/optimize current collector/contact materials for the ceramic anode
— Improve bonding, performance of Ni based current collection

— Develop alternative current collectors/contact materials to maintain HC, redox
tolerance

* Evaluate anode performance in reformates
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