SECA Core Technology Program - PNNL: Cell Materials Development **Jeff Stevenson** Cathode Development: Steve Simner, Mike Anderson Anode Development: Olga Marina, Axel Mueller Pacific Northwest National Laboratory Richland, WA 99352 Presented at the 6th Annual SECA Workshop Pacific Grove, CA, April 21, 2005 U.S. Department of Energy Pacific Northwest National Laboratory ### **Outline** #### Cathodes - LSF-based Cathodes - Current Collector Effects - Performance Degradation - LSM-based Cathodes - Optimization of Performance - Joint GE-PNNL-ANL Cr Degradation Study ### Anodes Current Collector/Contact Materials Development ### **Button Cell Experimental Set-Up** ### **Effect of Current Collector on LSF Performance** Anode supported cells tested on 50/50 H₂/N₂; 750°C; 0.7 V ### LSF - Platinum - Pt migrates from the current collector to the LSF-SDC interface. - Increased ohmic resistance possibly associated with removal of Pt from the Pt-cathode interface and increased contact resistance. ## LSF - Platinum (Possible Scenario) PtO₂ evaporates and deposits as Pt metal at reduction sites at the LSF-SDC interface $$PtO_{2(g)} + 4e' + 2V_{O}^{\bullet \bullet} \rightarrow Pt_{(s)} + 2O_{O}^{x}$$ - Pt deposition may catalyze the oxygen reduction reaction, and enhance cell performance. - Consistent with other studies detailing enhanced catalytic activity of SOFC cathodes by purposefully adding Pt or Pd at the cathodeelectrolyte interface. ## LSF - Silver - Silver deposition different to Pt → Ag not limited to interface may indicate a different mechanism. - Ag (and possibly AgO) vaporize and deposit at the LSF-SDC interface and within the SDC pores. ## Volatility of Noble Metal Species ### LSF - Gold - No detectable gold migration to the LSF-SDC interface or within the bulk cathode. - Cell indicates continued degradation during 500 hour test. - Only slight increase in ohmic resistance Au-cathode contact maintained due to lack of Au volatility 0 ### **Effect of Current Collector on LSF Performance** Anode supported cells tested on 50/50 H₂/N₂; 750°C; 0.7 V ## LSF Degradation – Role of Ni? ■ Is the degradation of LSF (with inert Au current collector) intrinsic to LSF or due to the combination of LSF with an anode-supported cell geometry → Ni migration. - Pt at LSF-SDC interface (for cells that show conditioning/stability) contains higher Ni levels than surrounding materials → Pt may act as a Ni getter. - Potential degradation mechanism involving Ni has not been established ## LSM-20 Optimization - Variables include: - A/B ratio 0.99 and 0.95 - Cells prepared with and without a ceria interlayer - Additions of ceria or YSZ to form a composite active cathode layer. - Microstructure: Sintering temperature, pore former addition, starting particle size. - B-site dopant additions. LSM-SDC mixed cathode with SDC interlayer. Au mesh/paste current collector. ## Cr Degradation Study #### Collaboration between GE, PNNL, & ANL #### Objectives - Determine under what conditions, if any, chromium transport has a detrimental effect on LSM-based cathodes - Determine if the observed Cr transport is predominantly vapor phase, solid state or both - Determine Cr compounds formed at cathode/electrolyte interface and cathode/interconnect interface regions - Correlate Cr observed at interfaces vs. observed performance degradation (if any) #### Test Conditions - InDEC cells w/ LSM-YSZ cathodes; 700, 800°C; 1000 hours - Cr sources evaluated: - E-brite flow field (ANL, GE) - Vapor phase from outside fixture (PNNL) - Transpiration experiments (PNNL) ## **Fixture for Cr Degradation Tests** ### **Anode Development - Introduction** - Ni-based anodes offer excellent performance in clean hydrogen or reformed hydrocarbon fuels - Challenges include redox stability, hydrocarbon tolerance (coking, thermal gradients), sulfur tolerance - Ceramic anodes (doped SrTiO₃/CeO₂ mixtures) combine high electrocatalytic activity for fuel oxidation with redox stability, tolerance of hydrocarbons, and tolerance of sulfur - Electronic conductivity, redox stability provided by titanate, activity for fuel oxidation provided by ceria - Challenges include relatively low electronic conductivity (compared to Ni-based anodes), processing temperature limitations (reactivity and microstructure coarsening at high processing temps). - Need to develop current collector / contact materials for ceramic anode / alloy interconnect interfaces ### "Traditional" Anode / Interconnect Interface - Need to establish stable, conductive interface between anode and alloy interconnect - Ni-based anodes allow establishment of metallurgical bond between anode and interconnect - •Typical approach: Bond Ni Mesh to alloy interconnect; Apply NiO contact paste between cell and mesh/interconnect during stack fabrication (850-950°C) #### Ceramic Anode / Interconnect Interface - Need to establish stable, conductive interface between thin active ceramic anode and alloy interconnect - Pt too expensive - •One option: Ni based contact material high conductivity may retain S tolerance (not concerned with S poisoning away from active anode) probably lose redox, hydrocarbon tolerance - •Graduated approach to improve bonding between Ni and anode # Electrolyte-supported cell operation with Pt/Pt and Ni-LST/Ni current collector/contact paste 160 μm YSZ electrolyte-supported cell (La,Sr)TiO₃- Ce(La)O₂ anode and LSF20 cathode with SDC interlayer; Fuel: H₂/H₂O=97/3; Oxidant=air # SEM image of a tested titanate/ceria ceramic anode w/ Ni-titanate (60/40 v%) current collecting layer requires improvement ## **Summary** #### LSF-based cathodes - Considerable performance disparity depending on the type of noble metal current collector used. - The LSF-Au configuration is most representative of true LSF performance, and reveals LSF instability. - Impact of Ni migration (from the anode into YSZ, SDC and LSF layers) on cathode degradation is being examined. #### LSM-based cathodes - Encouraging long-term stability data but modest power densities. - Cr Degradation study in progress GE, PNNL, ANL #### Ceramic anodes Optimization of Ni-based current collection / contact layers in progress ### **Future work** #### Cathode: - Evaluate LSF degradation mechanisms, including role of Ni - Optimize LSM-based cathodes - Joint GE-PNNL-ANL Cr poisoning study #### Anode: - Develop/optimize current collector/contact materials for the ceramic anode - Improve bonding, performance of Ni based current collection - Develop alternative current collectors/contact materials to maintain HC, redox tolerance - Evaluate anode performance in reformates ## Acknowledgements - The work summarized in this paper was funded under the U.S. Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program. - The authors wish to thank Wayne Surdoval, Lane Wilson, Travis Shultz, and Don Collins (NETL) for their helpful discussions regarding this work. - Metallographic preparation and SEM: Jim Coleman, Shelley Carlson, Nat Saenz.