Sulfur-Tolerant Anodes for SOFCs

Project Manager: Lane Wilson, NETL/DoE

S. Zha, Z. Cheng, Y. Choi, and M. Liu Center for Innovative Fuel Cell and Battery Technologies School of Materials Science and Engineering Georgia Institute of Technology

> April 18-21, 2005 Monterey, CA

Outline Outline

- •**Technical Issues Addressed**
- •**Objectives & Approach**
- • **Recent Progress (Since Oct 2004)**
	- The H_2S Poisoning Effect
	- Thermodynamic Analysis
	- QM Calculations
	- Exploration of New Sulfur-Tolerant Anode Materials
	- Mechanisms of Sulfur-Anode Interactions
- **Activities for the next 6-12 Months**

Critical Issues Critical Issues

- **What are the impacts of sulfur poisoning?**
- **How to study the interactions between sulfur and anodes?**
- **What is the mechanism of sulfur poisoning?**
- **What is required to achieve the sulfur tolerance needed for the SECA program?**
- **How to design new materials with required sulfur tolerance?**

Objectives Objectives

- **To characterize the effect of sulfur-poisoning on fuel cell performance under various operating conditions**
- **To investigate the detailed mechanisms of sulfur-poisoning**
- **To develop strategies for achieving both sulfur-tolerance and high performance**
- **To explore new sulfur-tolerant materials to meet SECA Program objectives**

Technical Approach Technical Approach

- • **Phenomenological Characterization of Sulfur Poisoning Effect**
	- **Impedance spectroscopy (I.S.)**
	- **Cell performance and anode over-potential**
- • **Understanding Sulfur Poisoning Mechanism**
	- *ex-situ* **examination of the anode via XRD, Raman, etc**
	- *in-situ* **Raman spectroscopy coupled with I.S.**
	- **Thermodynamic/kinetic analysis**
	- **MD and QM calculations**
- • **Design of New Anode Materials/New Structure**
	- **For modification/decoration of Ni-YSZ Surface**
	- **For replacement of Ni-YSZ anode**

Recent Progress: Since Oct 2004 Recent Progress: Since Oct 2004

- •**The H2S Poisoning Effect**
- Thermodynamic Analysis
- •QM Calculations
- • Exploration of New Sulfur-Tolerant Anode Materials

H₂S Poisoning of Ni-YSZ

Impedance Spectra

of a symmetrical cell Ni-YSZ/YSZ/Ni-YSZ

immersed in

 $\overline{\text{O}}$ Humidified H₂ for 3 days

- $\textcircled{2}$ 50 ppm H₂S (50v%H₂ & 50% N_2) for 3 hours
- **3** Humidified H_2 (Regeneration) for 14-16 hours

Summary: Effect of H₂S on Rp

At lower temperature

 Poisoning occurs faster and the effect is stronger

 Recovery is slower and more difficult

Note: The percentage adjacent to each data point represents the increase in Rp after poisoning or regeneration compared to the initial value before exposure to H_2S .

XRD and Raman Study of S-Ni Interactions

Bulk sulfides are not detected by XRD; yet S-Ni vibration are identified by Raman

Implications Implications

- • **The surface sulfur is most likely responsible to the observed degradation in performance.**
- • **While XRD is insensitive to sulfur poisoning, Raman spectroscopy could be used for probing and mapping of NiSx under in-situ conditions and hence for elucidating the sulfur-poisoning mechanism.**

What are the conditions under which nickel sulfides are expected?

- •The ${\sf H_2S}$ Poisoning Effect
- **Thermodynamic Analysis**
- •QM Calculations
- • Exploration of New Sulfur-Tolerant Anode Materials

Thermodynamic Stability of Ni in 50 ppm H₂S

 \bullet **Possible reactions between H₂S and Ni (bulk-phase):**

 $\mathsf{0.5\ Ni}$ + $\mathsf{H}_2\mathsf{S}\ \rightarrow\ \mathsf{0.5\ NiS}_2\ + \mathsf{H}_2$ $\mathsf{0.75\ Ni}$ + $\mathsf{H}_2\mathsf{S}\,\rightarrow\mathsf{0.25\ Ni}_3\mathsf{S}_4$ + H_2 $Ni + H₂S \rightarrow$ **NiS** $+ H₂$ 1.5 Ni + H₂S \rightarrow 0.5 Ni₃S₂ + H₂

Thermodynamics predicts that (bulk-phase) Nickel is stable (or sulfide NixSy is unstable) in 50 ppm H2S at elevated temperatures

The stability of NixSy increases with Ni to S ratio; Ni₃S₂ detected

Reaction Gibbs free energy change for several possible reactions between Ni and 50 ppmv H₂S in 50%H₂/1.5%H₂O/48.5%N₂ at elevated **temperatures**

Effect of H Effect of H22S Concentration S Concentration

Dependence on H₂S concentration of the reaction **Gibbs free energy for the formation of Ni** $_{3}$ **S** $_{2}$ **from** the reaction between Ni and H₂S in 97%H₂/3%H₂O

- **The stability of (bulk-phase) Ni** sulfide increases with H₂S **concentration but decreases with temperature**
- **Ni sulfide (bulk-phase) will form only at relatively high concentration of H₂S at low temperatures**

e.g., Ni₃S₂ is stable only when

Conclusion Conclusion

• **Thermodynamics predicts that Ni-YSZ are stable in 50 ppm H2S at >700C.**

 \bullet **The thermodynamic analysis does not seem to be helpful in understanding what is happened to Ni exposed to 50 ppmv H₂S.**

Speculation/Hypothesis Speculation/Hypothesis

- • **It was suspected that the adsorption energy for sulfur on Ni is significantly higher (more negative) than the bonding energy in a** Ni_xS_y **crystal*.**
- •**It appears that sulfur adsorption on Ni surface**

$$
H_2S_{(g)} \to S_{(ad)} + H_{2(g)}
$$

is energetically favorable in low concentration of H₂S **even when the formation of sulfides is unfavorable.**

***** C. H. Bartholomew, P. K. Agrawal, J. R. Katzer, "Sulfur Poisoning of Metals," *Advances in Catalysis*, Vol. 31 (1982), p 135.

Recent Progress: Since Oct 2004 Recent Progress: Since Oct 2004

- •The ${\sf H_2S}$ Poisoning Effect
- Thermodynamic Analysis
- •**QM Calculations**
- • Exploration of New Sulfur-Tolerant Anode Materials

Schematic of an SOFC in the molecular level

Fuel oxidation

Oxygen reduction

QM Calculation of $H₂S-Ni$ Interactions

Computational Approach Computational Approach

- •Molecular properties of the gas molecules
- •Properties of (e.g. crystal structure) of the solids
- \bullet Defect structures: vacancy, Interstitials, impurities

To Predict the Most Energetically Favorable Surface Configuration **for reactants, intermediates, and products**

FTIR/Raman Spectroscopy

Computational Method Computational Method

VASP (*Vienna Ab initio Simulation Package***)**

- **Supercell: Five layer [p(2**×**2)] units**
- **DFT: LDA with PW91 (GGA) correction**
- **Core pseudopotential**
- **Cut-off energy: 400 eV**
- **Vacuum space: ~ 10.0 Å**

(111) Surface and Adsorption Sites (111) Surface and Adsorption Sites

Adsorption energy in kcal/mol ∆**Ead ⁼**Σ**E[products] -** Σ**E[reactants] = E[surface + adsorbate] - E[surface] - E[adsorbate]**

Molecular Dynamics for H₂S Dissociation

• H_2S decomposition forming sulfur adsorption on Ni anode surface can occur in approximately **110 fs** under SOFC operating condition at 700oC.

H₂S Decomposition on Ni(111) Surface

Adsorption on Ni(111) Surface Adsorption on Ni(111) Surface

• **Energies in brackets are relative to Ni(111) + S**

Georgialnstitute **rech**mologn

Adsorption Energy on Ni (111) Surface Adsorption Energy on Ni (111) Surface

1/4 monolayer (ML)

- Surface adsorption energy is very large
- Sulfur is very stable on Ni surface, difficult to remove

Free Energies of Sulfide Formation on Ni & Cu Free Energies of Sulfide Formation on Ni & Cu

◆ Free energy change for sulfidation reaction at about 650 °C

- The formation of bulk and surface sulfide on nickel is easier than on copper
- Surface sulfide is far more stable than bulk sulfide

• C. H. Bartholomew et al., *Advanced in Catalysis*, Vol. 31, pp. 166-170, **1982**.

• L. G. Marianowski et al., Eur. Patent, 88810131.8, **1988**.

Sulfur Tolerance of Ni and Cu Sulfur Tolerance of Ni and Cu

1/4 monolayer (ML)

- **The results are in good agreement with data reported in literature**
- **Cu-based anodes is** \mathcal{L}^{max} **more sulfur-tolerant than Ni-based anodes**

Summary Summary

- **Constructed Ni(111) surface for the slab model calculations**
- **Predicted adsorption energies of S on the Ni(111) and Cu(111) surfaces, suggesting that fcc hollow site is the most stable**
- **Predicted step-wise reaction mechanism of H₂S decomposition on Ni(111) surface, which is in-line with XRD and Raman studies**

Implications Implications

- **While bulk sulfides may not be formed, sulfur strongly adsorbed on Ni or Cu surface blocks active sites for fuel oxidation, leading to performance degradation (poisoning effect)**
- **Surface adsorbed sulfur is difficult to remove, implying that Ni or Cu surfaces will have difficulty to get around sulfur poisoning effect**
- **New materials must be developed to achieve sulfur tolerance**

Recent Progress: Since Oct 2004 Recent Progress: Since Oct 2004

- •The ${\sf H_2S}$ Poisoning Effect
- Thermodynamic Analysis
- •QM Calculations
- • **Exploration of New Sulfur-Tolerant Anode Materials**

Requirements for S-Tolerant Anode Materials

Two primary requirements

- -Small Sulfur Adsorption Energy
- -High Catalytic Activity for Fuel Oxidation (H, C, **S**,…)
- * For modification/decoration of Ni or Cu surfaces

Other Desirable Properties

- -Sufficient Electrical conductivity
- Adequate compatibility with Electrolyte/Interconnect
- Resistance to Oxidation
- * For Replacement of Ni-Based anode

Development of New Anode Materials

Conductivity Measurement

Fuel Cell Fabrication Procedures

Testing of SOFCs in a H₂S Containing Fuel

Experiment setup for testing of SOFC in H₂S containing fuel

Candidate Anode Materials

Complex oxides (e.g., ABO₃, A₂B₂O₇, etc.)

- \bullet Sufficient conductivity due to delocalized *d* electron and/or doping-induced electronic defects
- \bullet • Good thermal match with YSZ due to their relatively open structure
- \bullet Good chemical stability due to stabilized cations by the complex structure
- •Decent catalytic activity due to the transition metal ions in the structure

^a for GTFC, ^b for PNNL, ^c for Los Alamos

Vanadium-Based Perovskites: **SrVO3** Vanadium-Based Perovskites: **SrVO3**

- • **Vanadium-based oxide has good catalytic activity towards sulfur,** e.g., V₂O₅ is used for **SO2 oxidation.**
- • **SrVO3 has high electrical conductivity:** σ **⁼ 1000S/cm @ 700oC, comparable to that for Ni/YSZ cermet**

Resistance to H Resistance to H22S

- • **Thermodynamic analysis indicated that SrVO3 is chemically** stable in 100 ppm H₂S at elevated temperature.
- •Under condition of 1000K, 100 ppm H₂S/3%H₂O/97%H₂, the free **energy change for the following sulfidation reaction:** $SrVO_{3 (s)}$ **+ H₂S**_(g) **+ 0.5 H₂**(g) \rightarrow SrS_(s) **+ 0.5 V₂O_{3(s)} + 1.5 H₂O_(g) is:** ∆**G** ≈ **+ 37 kJ/mol, i.e., this material is thermodynamically stable against low concentration of H2S.**

Polarization Resistance - SrVO Polarization Resistance - SrVO33

lmpedance spectra for a SrVO₃/YSZ/ SrVO₃ symmetrical cell in 50%H₂/1.5%H₂O/48.5%N₂.

• SrVO $_3$ has decent activity for ${\sf H_2}$ oxidation in fuel environment (0.25 Ω cm² @ 950°C); similar to Ni-YSZ

Effect of 50 ppmv H₂S on SrVO₃

Impedance spectra for a SrVO₃/YSZ/ SrVO₃ symmetrical cell when 50ppm H2S is introduced to a fuel of 50%H₂/1.5%H₂O/48.5%N₂

• The interfacial resistance for SrVO $_3$ anode showed no degradation in $\,$ 50ppm H_2 S for ~60 h.

$\mathbf{Stability\ of\ SrVO}_{3}\text{-}\mathbf{Based\ SOFC\ in\ H}_{2}\text{S/H}_{2}$

The result of cell stability test under much harsher condition (i.e., 1000°C, 5000-**10,000ppm H2S) suggested that the performance loss for SrVO3 anode might be reversible up to 10,000 ppm of H2S.**

Other Vanadium-Based Oxides: LSV

- • **La0.7Sr0.3VO3 show even better activity in H₂S than in** pure H₂
- • **The activity of LSV is better than Pt in high H2S content**
- • **Possible candidate for modifying the surface of Ni/YSZ anode**

$\textbf{Gd}_2\textbf{Ti}_{1.4}\textbf{Mo}_{0.6}\textbf{O}_7 \textbf{ (GTMO)}$

- Pyrochlore
- Phase stable under anodic conditions
- No reaction with H_2S

Note: Exposure & FC testing temperature: 950°C

Performance of GTMO Anode in an SOFC

Fuel cell: $Gd_{2}Ti_{1.4}Mo_{0.6}O_{7}/YSZ$ (0.25 mm)/LSCM

Performance of GTMO in H₂S

Fuel cell: $Gd_2Ti_{1.4}Mo_{0.6}O_7/YSZ$ (0.25 mm)/LSCM

Performance Stability of GTMO Anode

Stability testing (6 days) of a fuel cell operated on 10% $\mathsf{H}_{2}\mathsf{S}\text{-}\mathsf{H}_{2}$ at 950 °C at a constant cell terminal voltage of 0.70 V. Cathode: Pt

Microstructure of Gd₂Ti_{1.4}Mo_{0.6}O₇ Anode

Cross-Section

Top View

SEM images of the Gd $_2$ Ti $_{\rm 1.4}$ Mo $_{\rm 0.6}$ O $_7$ anode after fuel cell testing

Impedance Spectra of GTMO

Impedance spectra measured at 950 °C under open circuit conditions using a three-electrode configuration. Inset is the total impedance of the fuel cell. Anode: $10\%H_2S-90\%H_2$, Cathode: air

Georgia

Effluent Gas Analysis

Mass spectrum of the effluent gas when the anode was fed on 10% H₂S (N₂ balanced) at 950°C. The fuel cell was operated at a constant current density of 400 mA cm-2. The fuel flow rate: 12 ml min-1.

Conclusions Conclusions

- Vanadium based compounds demonstrated excellent S-tolerance and high catalytic activity in $H₂S$ -containing fuels and thus are possible candidates for modifying the surface of Ni/YSZ anode.
- Pyrochlore $\mathsf{Gd}_2\mathsf{Ti}_{1.4}\mathsf{Mo}_{0.6}\mathsf{O}_7$ (GTMO) also showed excellent sulfur tolerance and catalytic activity towards electrochemical oxidation of H_2S .

Activities for the Next 6-12 Months Activities for the Next 6-12 Months

- • **To elucidation the mechanism for** *H2S adsorption, decomposition, and interaction* **with oxide materials using in-situ characterization techniques in order to achieve intelligent design of new anode materials with sulfur tolerance**
- •**Further exploration of other potential sulfur-tolerant materials**
- • **Evaluation of catalytic activities towards oxidation of other sulfur compounds/contaminants**
- •**Long-term stability evaluation and strategies**
- • **Surface and structure modification of conventional Ni-based** anode to tolerate 50 ppm H₂S
	- \checkmark **sputtering**
	- \checkmark **solution infiltration**
	- \checkmark **suspension infiltration**

Acknowledgement Acknowledgement Acknowledgement

Lane Wilson, NETL/DoE

SECA Core Technology Program Dept of Energy/National Energy Tech Laboratory

Equipment funded by DURIP/ARO Center for Innovative Fuel Cell and Battery Technologies, Georgia Tech

