Sulfur-Tolerant Anodes for SOFCs

Project Manager: Lane Wilson, NETL/DoE

S. Zha, Z. Cheng, Y. Choi, and M. Liu Center for Innovative Fuel Cell and Battery Technologies School of Materials Science and Engineering Georgia Institute of Technology

> April 18-21, 2005 Monterey, CA

Outline

- Technical Issues Addressed
- Objectives & Approach
- Recent Progress (Since Oct 2004)
 - The H₂S Poisoning Effect
 - Thermodynamic Analysis
 - QM Calculations
 - Exploration of New Sulfur-Tolerant Anode Materials
 - Mechanisms of Sulfur-Anode Interactions
- Activities for the next 6-12 Months

Critical Issues

- What are the impacts of sulfur poisoning?
- How to study the interactions between sulfur and anodes?
- What is the mechanism of sulfur poisoning?
- What is required to achieve the sulfur tolerance needed for the SECA program?
- How to design new materials with required sulfur tolerance?

- To characterize the effect of sulfur-poisoning on fuel cell performance under various operating conditions
- To investigate the detailed mechanisms of sulfur-poisoning
- To develop strategies for achieving both sulfur-tolerance and high performance
- To explore new sulfur-tolerant materials to meet SECA Program objectives

Technical Approach

- Phenomenological Characterization of Sulfur Poisoning Effect
 - Impedance spectroscopy (I.S.)
 - Cell performance and anode over-potential
- Understanding Sulfur Poisoning Mechanism
 - ex-situ examination of the anode via XRD, Raman, etc
 - in-situ Raman spectroscopy coupled with I.S.
 - Thermodynamic/kinetic analysis
 - MD and QM calculations
- Design of New Anode Materials/New Structure
 - For modification/decoration of Ni-YSZ Surface
 - For replacement of Ni-YSZ anode

Recent Progress: Since Oct 2004

- The H₂S Poisoning Effect
- Thermodynamic Analysis
- QM Calculations
- Exploration of New Sulfur-Tolerant
 Anode Materials

H₂S Poisoning of Ni-YSZ

Impedance Spectra

of a symmetrical cell **Ni-YSZ/YSZ/Ni-YSZ**

immersed in

- 0 Humidified \mbox{H}_2 for 3 days
- ② 50 ppm H₂S (50v%H₂ & 50% N₂) for 3 hours
- ③ Humidified H₂ (Regeneration) for 14-16 hours

Summary: Effect of H₂S on Rp

At lower temperature

Poisoning occurs faster and the effect is stronger

Recovery is slower and more difficult

Note: The percentage adjacent to each data point represents the increase in Rp after poisoning or regeneration compared to the initial value before exposure to H_2S .

XRD and Raman Study of S-Ni Interactions

Bulk sulfides are not detected by XRD; yet S-Ni vibration are identified by Raman

Implications

- The surface sulfur is most likely responsible to the observed degradation in performance.
- While XRD is insensitive to sulfur poisoning, Raman spectroscopy could be used for probing and mapping of NiSx under in-situ conditions and hence for elucidating the sulfur-poisoning mechanism.

Sulfur-Tolerant Anodes

Georgia Institute of Technology

- The H₂S Poisoning Effect
- Thermodynamic Analysis
- QM Calculations
- Exploration of New Sulfur-Tolerant
 Anode Materials

Thermodynamic Stability of Ni in 50 ppm H₂S

 Possible reactions between H₂S and Ni (bulk-phase):

Thermodynamics predicts that (bulk-phase) Nickel is stable (or sulfide Ni_xS_y is unstable) in 50 ppm H₂S at elevated temperatures

The stability of Ni_xS_y increases with Ni to S ratio; Ni_3S_2 detected

Reaction Gibbs free energy change for several possible reactions between Ni and 50 ppmv H_2S in 50% $H_2/1.5$ % $H_2O/48.5$ % N_2 at elevated temperatures

Effect of H₂S Concentration

Dependence on H_2S concentration of the reaction Gibbs free energy for the formation of Ni_3S_2 from the reaction between Ni and H_2S in 97% $H_2/3%H_2O$

- The stability of (bulk-phase) Ni sulfide increases with H₂S concentration but decreases with temperature
- Ni sulfide (bulk-phase) will form only at relatively high concentration of H₂S at low temperatures

e.g., Ni_3S_2 is stable only when [H₂S] > 10³ ppmv at T < 800K

Conclusion

 Thermodynamics predicts that Ni-YSZ are stable in 50 ppm H₂S at >700C.

 The thermodynamic analysis does not seem to be helpful in understanding what is happened to Ni exposed to 50 ppmv H₂S.

Speculation/Hypothesis

- It was suspected that the adsorption energy for sulfur on Ni is significantly higher (more negative) than the bonding energy in a Ni_xS_y crystal*.
- It appears that sulfur adsorption on Ni surface

$$H_2S_{(g)} \rightarrow S_{(ad)} + H_{2(g)}$$

is energetically favorable in low concentration of H_2S even when the formation of sulfides is unfavorable.

* C. H. Bartholomew, P. K. Agrawal, J. R. Katzer, "Sulfur Poisoning of Metals," *Advances in Catalysis*, Vol. 31 (1982), p 135.

Recent Progress: Since Oct 2004

- The H₂S Poisoning Effect
- Thermodynamic Analysis
- QM Calculations
- Exploration of New Sulfur-Tolerant
 Anode Materials

Schematic of an SOFC in the molecular level

Fuel oxidation

Oxygen reduction

QM Calculation of H₂S–Ni Interactions

Georgia Institute of Technology

Computational Approach

- Molecular properties of the gas molecules
- Properties of (e.g. crystal structure) of the solids
- Defect structures: vacancy, Interstitials, impurities

To Predict the Most Energetically Favorable Surface Configuration for reactants, intermediates, and products

Vibrations

Energy for ads., dissociation, favorable reaction pathways

FTIR/Raman Spectroscopy

Computational Method

VASP (Vienna Ab initio Simulation Package)

- Supercell: Five layer [p(2×2)] units
- DFT: LDA with PW91 (GGA) correction
- Core pseudopotential
- Cut-off energy: 400 eV
- Vacuum space: ~ 10.0 Å

(111) Surface and Adsorption Sites

Adsorption energy in kcal/mol $\Delta E_{ad} = \Sigma E[products] - \Sigma E[reactants]$ = E[surface + adsorbate] - E[surface] - E[adsorbate]

Molecular Dynamics for H₂S Dissociation

• H₂S decomposition forming sulfur adsorption on Ni anode surface can occur in approximately **110 fs** under SOFC operating condition at 700°C.

H₂S Decomposition on Ni(111) Surface

Adsorption on Ni(111) Surface

• Energies in brackets are relative to Ni(111) + S

GeorgiaInstitute of **Tech**nology

Adsorption Energy on Ni (111) Surface

1/4 monolayer (ML)

- Surface adsorption energy is very large
- Sulfur is very stable on Ni surface, difficult to remove

Free Energies of Sulfide Formation on Ni & Cu

Free energy change for sulfidation reaction at about 650°C

- The formation of bulk and surface sulfide on nickel is easier than on copper
- Surface sulfide is far more stable than bulk sulfide

C. H. Bartholomew et al., *Advanced in Catalysis*, Vol. 31, pp. 166-170, **1982**.
L. G. Marianowski et al., Eur. Patent, 88810131.8, **1988**.

Sulfur Tolerance of Ni and Cu

1/4 monolayer (ML)

- The results are in good agreement with data reported in literature
- Cu-based anodes is more sulfur-tolerant than Ni-based anodes

Summary

- Constructed Ni(111) surface for the slab model calculations
- Predicted adsorption energies of S on the Ni(111) and Cu(111) surfaces, suggesting that fcc hollow site is the most stable
- Predicted step-wise reaction mechanism of H₂S decomposition on Ni(111) surface, which is in-line with XRD and Raman studies

Implications

- While bulk sulfides may not be formed, sulfur strongly adsorbed on Ni or Cu surface blocks active sites for fuel oxidation, leading to performance degradation (poisoning effect)
- Surface adsorbed sulfur is difficult to remove, implying that Ni or Cu surfaces will have difficulty to get around sulfur poisoning effect
- New materials must be developed to achieve sulfur tolerance

Recent Progress: Since Oct 2004

- The H₂S Poisoning Effect
- Thermodynamic Analysis
- QM Calculations
- Exploration of New Sulfur-Tolerant
 Anode Materials

Requirements for S-Tolerant Anode Materials

Two primary requirements

- Small Sulfur Adsorption Energy
- High Catalytic Activity for Fuel Oxidation (H, C, S,...)
- * For modification/decoration of Ni or Cu surfaces

Other Desirable Properties

- Sufficient Electrical conductivity
- Adequate compatibility with Electrolyte/Interconnect
- Resistance to Oxidation
- * For Replacement of Ni-Based anode

Development of New Anode Materials

Conductivity Measurement

Fuel Cell Fabrication Procedures

Testing of SOFCs in a H₂S Containing Fuel

Experiment setup for testing of SOFC in H₂S containing fuel

Candidate Anode Materials

Complex oxides (e.g., ABO₃, A₂B₂O₇, etc.)

- Sufficient conductivity due to delocalized *d* electron and/or doping-induced electronic defects
- Good thermal match with YSZ due to their relatively open structure
- Good chemical stability due to stabilized cations by the complex structure
- Decent catalytic activity due to the transition metal ions in the structure

Material for example	σ at 800ºC (S cm⁻¹)	CTE (10 ⁻⁶ K ⁻¹)	R _p at 800 °C (Ω cm²)	Chemical stability
La _{0.35} Sr _{0.65} TiO ₃ (LST) ^{a, b, c}	600	11-12	9	Excellent
La _{0.7} Sr _{0.3} VO ₃ (LSV) ^a	140	10-12	4	Fair
La _{1-x} Sr _x Cr _{1-y} Mn _y O ₃ (LSCM) ^{a, b, c}	1.5	10-11	-	Excellent
Gd ₂ Ti _{1-x} Mo _x O ₇ (GTMO) ^a	1	10.8	3	Fair
SrVO ₃ ^a	800	-	1	Fair

^a for GTFC, ^b for PNNL, ^c for Los Alamos

Vanadium-Based Perovskites: SrVO₃

- Vanadium-based oxide has good catalytic activity towards sulfur, e.g., V_2O_5 is used for SO₂ oxidation.
- SrVO₃ has high
 electrical conductivity:
 σ = 1000S/cm @ 700°C,
 comparable to that for
 Ni/YSZ cermet

Resistance to H₂S

- Thermodynamic analysis indicated that $SrVO_3$ is chemically stable in 100 ppm H₂S at elevated temperature.
- Under condition of 1000K, 100 ppm $H_2S/3\%H_2O/97\%H_2$, the free energy change for the following sulfidation reaction: $SrVO_{3 (s)} + H_2S_{(g)} + 0.5 H_{2 (g)} \rightarrow SrS_{(s)} + 0.5 V_2O_{3 (s)} + 1.5 H_2O_{(g)}$ is: $\Delta G \approx + 37$ kJ/mol, i.e., this material is thermodynamically stable against low concentration of H_2S .

Polarization Resistance - SrVO₃

Impedance spectra for a SrVO₃/YSZ/ SrVO₃ symmetrical cell in 50%H₂/1.5%H₂O/48.5%N₂.

 SrVO₃ has decent activity for H₂ oxidation in fuel environment (0.25 Ω cm² @ 950°C); similar to Ni-YSZ

Effect of 50 ppmv H₂S on SrVO₃

Impedance spectra for a SrVO₃/YSZ/ SrVO₃ symmetrical cell when 50ppm H2S is introduced to a fuel of $50\%H_2/1.5\%H_2O/48.5\%N_2$

 The interfacial resistance for SrVO₃ anode showed no degradation in 50ppm H₂S for ~60 h.

Stability of SrVO₃-Based SOFC in H₂S/H₂

The result of cell stability test under much harsher condition (i.e., 1000°C, 5000-10,000ppm H_2S) suggested that the performance loss for SrVO₃ anode might be reversible up to 10,000 ppm of H_2S .

Other Vanadium-Based Oxides: LSV

- La_{0.7}Sr_{0.3}VO₃ show even
 better activity in H₂S than in pure H₂
- The activity of LSV is better than Pt in high H₂S content
- Possible candidate for modifying the surface of Ni/YSZ anode

Gd₂Ti_{1.4}Mo_{0.6}O₇ (GTMO)

- Pyrochlore
- Phase stable under anodic conditions
- No reaction with H₂S

Note: Exposure & FC testing temperature: 950°C

Performance of GTMO Anode in an SOFC

Fuel cell: Gd₂Ti_{1.4}Mo_{0.6}O₇/YSZ (0.25 mm)/LSCM

Performance of GTMO in H₂S

Fuel cell: Gd₂Ti_{1.4}Mo_{0.6}O₇/YSZ (0.25 mm)/LSCM

Performance Stability of GTMO Anode

Stability testing (6 days) of a fuel cell operated on 10% H_2S-H_2 at 950 °C at a constant cell terminal voltage of 0.70 V. Cathode: Pt

Microstructure of Gd₂Ti_{1.4}Mo_{0.6}O₇Anode

Cross-Section

Top View

SEM images of the $Gd_2Ti_{1.4}Mo_{0.6}O_7$ anode after fuel cell testing

Impedance Spectra of GTMO

Impedance spectra measured at 950 °C under open circuit conditions using a three-electrode configuration. Inset is the total impedance of the fuel cell. Anode: $10\%H_2S-90\%H_2$, Cathode: air

Effluent Gas Analysis

Mass spectrum of the effluent gas when the anode was fed on 10% H_2S (N_2 balanced) at 950°C. The fuel cell was operated at a constant current density of 400 mA cm⁻². The fuel flow rate: 12 ml min⁻¹.

Conclusions

- Vanadium based compounds demonstrated excellent S-tolerance and high catalytic activity in H₂S-containing fuels and thus are possible candidates for modifying the surface of Ni/YSZ anode.
- Pyrochlore Gd₂Ti_{1.4}Mo_{0.6}O₇ (GTMO) also showed excellent sulfur tolerance and catalytic activity towards electrochemical oxidation of H₂S.

Activities for the Next 6-12 Months

- To elucidation the mechanism for *H*₂*S adsorption, decomposition, and interaction* with oxide materials using in-situ characterization techniques in order to achieve intelligent design of new anode materials with sulfur tolerance
- Further exploration of other potential sulfur-tolerant materials
- Evaluation of catalytic activities towards oxidation of other sulfur compounds/contaminants
- Long-term stability evaluation and strategies
- Surface and structure modification of conventional Ni-based anode to tolerate 50 ppm H₂S
 - ✓ sputtering
 - ✓ solution infiltration
 - ✓ suspension infiltration

Acknowledgement

Lane Wilson, NETL/DoE

SECA Core Technology Program Dept of Energy/National Energy Tech Laboratory

Equipment funded by DURIP/ARO Center for Innovative Fuel Cell and Battery Technologies, Georgia Tech

