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OutlineOutlineOutline

• Technical Issues Addressed

• Objectives & Approach

• Recent Progress (Since Oct 2004)
– The H2S Poisoning Effect
– Thermodynamic Analysis
– QM Calculations
– Exploration of New Sulfur-Tolerant Anode Materials
– Mechanisms of Sulfur-Anode Interactions

• Activities for the next 6-12 Months
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Critical IssuesCritical IssuesCritical Issues

• What are the impacts of sulfur poisoning?

• How to study the interactions between sulfur 
and anodes?

• What is the mechanism of sulfur poisoning?

• What is required to achieve the sulfur 
tolerance needed for the SECA program?

• How to design new materials with required 
sulfur tolerance?
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ObjectivesObjectivesObjectives

• To characterize the effect of sulfur-poisoning 
on fuel cell performance under various 
operating conditions

• To investigate the detailed mechanisms of 
sulfur-poisoning

• To develop strategies for achieving both 
sulfur-tolerance and high performance

• To explore new sulfur-tolerant materials to 
meet SECA Program objectives
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Technical ApproachTechnical Approach

• Phenomenological Characterization of Sulfur Poisoning Effect
– Impedance spectroscopy (I.S.)
– Cell performance and anode over-potential

• Understanding Sulfur Poisoning Mechanism
– ex-situ examination of the anode via XRD, Raman, etc
– in-situ Raman spectroscopy coupled with I.S.
– Thermodynamic/kinetic analysis
– MD and QM calculations

• Design of New Anode Materials/New Structure
– For modification/decoration of Ni-YSZ Surface
– For replacement of Ni-YSZ anode
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Recent Progress: Since Oct 2004Recent Progress: Since Oct 2004Recent Progress: Since Oct 2004

• The H2S Poisoning Effect

• Thermodynamic Analysis

• QM Calculations

• Exploration of New Sulfur-Tolerant 
Anode Materials
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H2S Poisoning of Ni-YSZHH22SS Poisoning Poisoning of Niof Ni--YSZYSZ

Impedance Spectra
of a symmetrical cell 

Ni-YSZ/YSZ/Ni-YSZ
immersed in

Humidified H2 for 3 days

50 ppm H2S (50v%H2 & 50% 
N2) for 3 hours

Humidified H2 (Regeneration) 
for 14-16 hours
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Summary: Effect of H2S on RpSummary: Effect of Summary: Effect of HH22SS on on RpRp

Note: The percentage adjacent to each data point represents the 
increase in Rp after poisoning or regeneration compared to the 
initial value before exposure to H2S.
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At lower temperature
• Poisoning occurs 

faster and the effect 
is stronger

• Recovery is slower 
and more difficult
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XRD and Raman Study of S-Ni InteractionsXRD and Raman Study of XRD and Raman Study of SS--Ni InteractionsNi Interactions
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Ni-YSZ cermet was exposed to 
humidified hydrogen containing 100
ppm H2S at 727oC for 5 days.

Bulk sulfides are not detected by XRD; yet S-Ni 
vibration are identified by Raman
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ImplicationsImplications

• The surface sulfur is most likely responsible to 
the observed degradation in performance.

• While XRD is insensitive to sulfur poisoning, 
Raman spectroscopy could be used for probing 
and mapping of NiSx under in-situ conditions   
and hence for elucidating the sulfur-poisoning 
mechanism.
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QuestionQuestion

What are the conditions under which 
nickel sulfides are expected? 
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Recent Progress: Since Oct 2004Recent Progress: Since Oct 2004Recent Progress: Since Oct 2004

• The H2S Poisoning Effect

• Thermodynamic Analysis

• QM Calculations

• Exploration of New Sulfur-Tolerant 
Anode Materials
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Thermodynamic Stability of Ni in 50 ppm H2SThermodynamic Stability of Ni in 50 ppm H2S

• Possible reactions between H2S 
and Ni (bulk-phase):

0.5 Ni + H2S  → 0.5 NiS2 + H2

0.75 Ni + H2S  → 0.25 Ni3S4 + H2

Ni + H2S  → NiS    + H2

1.5 Ni + H2S  → 0.5 Ni3S2  + H2

Reaction Gibbs free energy change for several 
possible reactions between Ni and 50 ppmv
H2S in 50%H2/1.5%H2O/48.5%N2 at elevated 
temperatures 
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sulfide NixSy is unstable) in 50
ppm H2S at elevated temperatures

The stability of NixSy increases 
with Ni to S ratio; Ni3S2 detected
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• The stability of (bulk-phase) Ni 
sulfide increases with H2S 
concentration but decreases with 
temperature 

• Ni sulfide (bulk-phase) will form 
only at relatively high 
concentration of H2S at low 
temperatures  

e.g., Ni3S2 is stable only when 
[H2S] > 103 ppmv at T < 800K 
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ConclusionConclusion

• Thermodynamics predicts that Ni-YSZ 
are stable in 50 ppm H2S at >700C.

• The thermodynamic analysis does not 
seem to be helpful in understanding 
what is happened to Ni exposed to 50
ppmv H2S.
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Speculation/HypothesisSpeculation/HypothesisSpeculation/Hypothesis

• It was suspected that the adsorption energy for sulfur 
on Ni is significantly higher (more negative) than the 
bonding energy in a NixSy crystal*.   

• It appears that sulfur adsorption on Ni surface

H2S (g) → S(ad) + H2 (g)

is energetically favorable in low concentration of H2S 
even when the formation of sulfides is unfavorable.

* C. H. Bartholomew, P. K. Agrawal, J. R. Katzer, “Sulfur Poisoning of Metals,”
Advances in Catalysis, Vol. 31 (1982), p 135.
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Recent Progress: Since Oct 2004Recent Progress: Since Oct 2004Recent Progress: Since Oct 2004

• The H2S Poisoning Effect

• Thermodynamic Analysis

• QM Calculations

• Exploration of New Sulfur-Tolerant 
Anode Materials
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Schematic of an SOFC in the molecular levelSchematic of an SOFC in the molecular level

Fuel oxidation

Re- e-H2 + O-2 = H2O + 2e-

Oxygen reduction

1/2O2 + 2e- = O2-

Ni-YSZ La1-xSrxMnO3
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QM Calculation of H2S–Ni InteractionsQM Calculation of H2S–Ni Interactions



SulfurSulfur--Tolerant AnodesTolerant Anodes

Computational ApproachComputational Approach

To Predict the Most Energetically Favorable Surface Configuration

for reactants, intermediates, and products 

• Molecular properties of the gas molecules
• Properties of (e.g. crystal structure) of the solids
• Defect structures: vacancy, Interstitials, impurities

Vibrations FTIR/Raman Spectroscopy

Energetics
Energy for ads., dissociation,
favorable reaction pathways

H Ψ = E Ψ
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Computational MethodComputational Method

VASP (Vienna Ab initio Simulation Package)
• Supercell: Five layer [p(2×2)] units
• DFT: LDA with PW91 (GGA) correction
• Core pseudopotential
• Cut-off energy: 400 eV
• Vacuum space: ~ 10.0 Å

Super cellSuper cell

Side view Top view

Coordinates
are relaxed

Fixed layers
(bulk)
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(111) Surface and Adsorption Sites(111) Surface and Adsorption Sites

p(2×2) unit cell bridge

hcp-hollow

top

fcc-hollow

Adsorption energy in kcal/mol
∆Ead = ΣE[products] - ΣE[reactants]

= E[surface + adsorbate] - E[surface] - E[adsorbate] 
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Molecular Dynamics for H2S DissociationMolecular Dynamics for H2S Dissociation

• H2S decomposition forming 
sulfur adsorption on Ni anode 
surface can occur in 
approximately 110 fs under 
SOFC  operating condition 
at 700oC.
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H2S Decomposition on Ni(111) SurfaceH2S Decomposition on Ni(111) Surface

H2S Adsorption

-13.1 kcal/mol

• Energies are relative to Ni(111) + H2S

Dissociative H2S adsorption

-39.8 kcal/mol

-15.7 kcal/mol

SH + H

+ H

Ni(111)-S + 2H
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Adsorption on Ni(111) SurfaceAdsorption on Ni(111) Surface

hcp hollow

-40.7 [-124.3]

fcc hollow

-41.3 [-125.0]

-7.1 [-90.8]

top

-36.3 [-119.9]

bridge

• Energies in brackets are relative to Ni(111) + S 
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Adsorption Energy on Ni (111) SurfaceAdsorption Energy on Ni (111) Surface
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Sulfur is very 
stable on Ni 
surface, difficult to 
remove
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Free Energies of Sulfide Formation on Ni & CuFree Energies of Sulfide Formation on Ni & Cu

Free energy change for sulfidation reaction at about 650oC
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The formation of bulk 
and surface sulfide on 
nickel is easier than on 
copper
Surface sulfide is far 
more stable than bulk 
sulfide

• C. H. Bartholomew et al., Advanced in Catalysis, Vol. 31, pp. 166-170, 1982.
• L. G. Marianowski et al., Eur. Patent, 88810131.8, 1988.
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Sulfur Tolerance of Ni and CuSulfur Tolerance of Ni and Cu
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The results are in 
good agreement with 
data reported in 
literature

Cu-based anodes  is 
more sulfur-tolerant 
than Ni-based 
anodes



SulfurSulfur--Tolerant AnodesTolerant Anodes

SummarySummary

Constructed Ni(111) surface for the slab 
model calculations

Predicted adsorption energies of S on the 
Ni(111) and Cu(111) surfaces, suggesting that 
fcc hollow site is the most stable

Predicted step-wise reaction mechanism of 
H2S decomposition on Ni(111) surface, which 
is in-line with XRD and Raman studies 
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ImplicationsImplications

While bulk sulfides may not be formed, sulfur 
strongly adsorbed on Ni or Cu surface blocks 
active sites for fuel oxidation, leading to 
performance degradation (poisoning effect)

Surface adsorbed sulfur is difficult to remove, 
implying that Ni or Cu surfaces will have 
difficulty to get around sulfur poisoning effect

New materials must be developed to achieve 
sulfur tolerance
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Recent Progress: Since Oct 2004Recent Progress: Since Oct 2004Recent Progress: Since Oct 2004

• The H2S Poisoning Effect

• Thermodynamic Analysis

• QM Calculations

• Exploration of New Sulfur-Tolerant 
Anode Materials
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Requirements for S-Tolerant Anode MaterialsRequirements for S-Tolerant Anode Materials

Two primary requirements
- Small Sulfur Adsorption Energy
- High Catalytic Activity for Fuel Oxidation (H, C, S,…)
* For modification/decoration of Ni or Cu surfaces

Other Desirable Properties 
- Sufficient Electrical conductivity
- Adequate compatibility with Electrolyte/Interconnect
- Resistance to Oxidation
* For Replacement of Ni-Based anode
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Development of New Anode MaterialsDevelopment of New Anode Materials

Materials 
synthesis

Application

Fuel cell 
testing

Stability 
evaluation

Material & 
structure 

optimization

Chemical 
stability

Exposure 
to H2S

XRD

Conduction 
& stability

Exposure 
to H2S

4-probe dc



SulfurSulfur--Tolerant AnodesTolerant Anodes

Conductivity Measurement Conductivity Measurement Conductivity Measurement 
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Fuel Cell Fabrication Procedures Fuel Cell Fabrication Procedures Fuel Cell Fabrication Procedures 

Pressing YSZ Powders
and firing at 15500C

Screen-painting of
cathode and reference Firing cathode at

12000C for2 hrs

Cathode:                 
LSM-YSZ

Electrolyte:
8% (YSZ)
~ 250 µm

Anode:
New materials 

to be determined

Brush-painting 
of anode

In-situ firing at
10000C for 2 hours

Attachment of current 
collectors and lead wires



SulfurSulfur--Tolerant AnodesTolerant Anodes

Testing of SOFCs in a H2S Containing FuelTesting of SOFCs in a H2S Containing Fuel

Experiment setup for testing of SOFC in H2S containing fuel

H2

¼’’ 316 SS
Bubbler

Effluent Gas 
analysis

H2S
&
H2

H2S
&
H2

H2N2N2

Furnace

Aremco ® 503
VFG

Ref

Pt lead
wires

Fuel Outlet

Fuel Inlet

® 503
VFG

Cathode

Fuel Inlet

Anode
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Candidate Anode MaterialsCandidate Anode Materials

Complex oxides (e.g., ABO3, A2B2O7, etc.)
• Sufficient conductivity due to delocalized d electron and/or doping-induced 

electronic defects
• Good thermal match with YSZ due to their relatively open structure
• Good chemical stability due to stabilized cations by the complex structure
• Decent catalytic activity due to the transition metal ions in the structure
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Vanadium-Based Perovskites: SrVO3Vanadium-Based Perovskites: SrVO3

Measured in humidified H2 

at different temperatures

• Vanadium-based oxide 
has good catalytic 
activity towards sulfur, 
e.g., V2O5 is used for 
SO2 oxidation.

• SrVO3 has high 
electrical conductivity: 
σ = 1000S/cm @ 700oC, 
comparable to that for 
Ni/YSZ cermet
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Resistance to H2SResistance to H2S

• Thermodynamic analysis indicated that SrVO3 is chemically 

stable in 100 ppm H2S at elevated temperature. 

• Under condition of 1000K, 100 ppm H2S/3%H2O/97%H2, the free 

energy change for the following sulfidation reaction:

SrVO3 (s) + H2S (g) + 0.5 H2 (g) → SrS (s) +  0.5 V2O3 (s) + 1.5 H2O (g)

is: ∆G ≈ + 37 kJ/mol, i.e., this material is thermodynamically 

stable against low concentration of H2S.
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Polarization Resistance - SrVO3Polarization Resistance - SrVO3

• SrVO3 has decent activity for H2 oxidation in fuel environment 
(0.25 Ω cm2 @ 950oC); similar to Ni-YSZ

Impedance spectra for a SrVO3/YSZ/ SrVO3 symmetrical cell in 50%H2/1.5%H2O/48.5%N2.
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Effect of 50 ppmv H2S on SrVO3Effect of 50 Effect of 50 ppmvppmv HH22S on SrVOS on SrVO33

• The interfacial resistance for SrVO3 anode showed no degradation in 
50ppm H2S for ~60 h.

Impedance spectra for a SrVO3/YSZ/ SrVO3 symmetrical cell when 50ppm H2S is introduced 
to a fuel of 50%H2/1.5%H2O/48.5%N2
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The result of cell stability test under much harsher condition (i.e., 1000oC, 5000-
10,000ppm H2S) suggested that the performance loss for SrVO3 anode might be
reversible up to 10,000 ppm of H2S. 

Stability of SrVO3-Based SOFC in H2S/H2Stability of SrVOStability of SrVO33-Based SOFC in H2S/H2

Fast Recovery
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Results Up to Date (5)Results Up to Date (5)Results Up to Date (5)
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• La0.7Sr0.3VO3 show even 
better activity in H2S than in
pure H2

• The activity of LSV is better 
than Pt in high H2S content

• Possible candidate for 
modifying the surface of 
Ni/YSZ anode

Inverse interfacial resistance vs. inverse temperature 
for LSV/YSZ/LSV and Pt/YSZ/Pt symmetrical cells at 
different temperatures

Other Vanadium-Based Oxides: LSVOther Vanadium-Based Oxides: LSV
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Gd2Ti1.4Mo0.6O7 (GTMO)GdGd22TiTi1.41.4MoMo0.60.6OO77 (GTMO)(GTMO)

• Pyrochlore

• Phase stable 
under anodic 
conditions

• No reaction 
with H2S
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Performance of GTMO Anode in an SOFCPerformance of GTMO Anode in an SOFC

Fuel: 10%H2S-90%H2, 20 ml min-1
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Fuel cell: Gd2Ti1.4Mo0.6O7/YSZ (0.25 mm)/LSCM
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Fuel: H2, 28 ml min-1
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Performance of GTMO in H2SPerformance of GTMO in H2S

Fuel: 10%H2S in N2, 12 ml min-1

Fuel cell: Gd2Ti1.4Mo0.6O7/YSZ (0.25 mm)/LSCM
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Performance Stability of GTMO Anode Performance Stability of GTMO Anode Performance Stability of GTMO Anode 
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Stability testing (6 days) of a fuel cell operated on 10% H2S-H2 at 
950 oC at a constant cell terminal voltage of 0.70 V.  Cathode: Pt
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Microstructure of Gd2Ti1.4Mo0.6O7 AnodeMicrostructure of Microstructure of Gd2Ti1.4Mo0.6O7 AnodeAnode

SEM images of the Gd2Ti1.4Mo0.6O7 anode after fuel cell testing

a b

Cross-Section Top View
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Impedance Spectra of GTMOImpedance Spectra of GTMOImpedance Spectra of GTMO
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Impedance spectra measured at 950 oC under open circuit 
conditions using a three-electrode configuration. Inset is the total 
impedance of the fuel cell. Anode: 10%H2S-90%H2, Cathode: air
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Effluent Gas AnalysisEffluent Gas AnalysisEffluent Gas Analysis

Mass spectrum of the effluent gas when the anode was fed on 10% 
H2S (N2 balanced) at 950oC. The fuel cell was operated at a constant 
current density of 400 mA cm-2. The fuel flow rate: 12 ml min-1. 
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ConclusionsConclusions

• Vanadium based compounds demonstrated 
excellent S-tolerance and high catalytic activity in 
H2S-containing fuels and thus are possible 
candidates for modifying the surface of Ni/YSZ 
anode.

• Pyrochlore Gd2Ti1.4Mo0.6O7 (GTMO) also 
showed excellent sulfur tolerance and catalytic 
activity towards electrochemical oxidation of H2S.
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Activities for the Next 6-12 MonthsActivities for the Next 6-12 Months

• To elucidation the mechanism for H2S adsorption, decomposition, and 
interaction with oxide materials using in-situ characterization 
techniques in order to achieve intelligent design of new anode 
materials with sulfur tolerance

• Further exploration of other potential sulfur-tolerant materials

• Evaluation of catalytic activities towards oxidation of other 
sulfur compounds/contaminants

• Long-term stability evaluation and strategies

• Surface and structure modification of conventional Ni-based 
anode to tolerate 50 ppm H2S

sputtering
solution infiltration
suspension infiltration
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