

April 18-21, 2005

CERAMIC FUEL CELL INDUSTRIAL BASE MOBILIZATION

W. Grover Coors
Chief Scientist
Fuel Cell R&D

How big is the SOFC marketplace?

1 gigawatt?

1 gigawatt?

10 gigawatt?

1 gigawatt?

10 gigawatt?

100 gigawatt?

SECA Target (\$400/kW, 40 khrs)

(PNG Cost: \$7 (whs), \$10 (ret) per MMBTU)

\$1000/kW, 40 khrs

(PNG Cost: \$7 (whs), \$10 (ret) per MMBTU)

40% → 1 GW

60% → 100 GW

Low cost/ high volume manufacturing

High fuel cell efficiency

Pathway to Low Cost/ High Volume Manufacturing

Serving our customers where they need us...

...from 18 facilities and over two million square feet worldwide!

Serving virtually every industry in the global economy...

Aerospace and Aviation

Air-Bearing Guideways

Analytical Labs

Armor Protection

Chemical Processing

Defense and Security

Electronics

Electron Tube Components

Fuel Cell Components

Food & Beverage

Industrial

Labware

Laser Equipment Components

Medical

Mining and Minerals

Oil & Gas

Optical

Power Generation

Precision Measurement

Pulp & Paper

Semiconductor

Telecom

Thermal

Transportation

Tubes & Rods

Wire and Cabling

Our strategy is to provide value in many diverse markets by employing our Core Business Strengths in expanding or developing technology niches.

- Custom Engineering
- Materials Expertise
- Operational Excellence
- Rapid Execution!

Core Business Strengths – Materials Expertise

From materials design to the finished component, our vertically-integrated manufacturing ensures quality throughout the process...

Materials Design → Material Preparation → Forming

Sintering

→ Machining

→ Finishing

CoorsTek solves customer challenges using a very large variety of materials...

Technical Ceramics

High-Purity Aluminas

Silicon Carbides

Tungsten Carbides

Zirconias

High-Performance Plastics

High-Temperature Fluoropolymers

Elastomers and Teflons

- Powder characterization
 - BET, sedigraph
- Physical
 - Density, mercury, porosimetry
 - Phase assemblage by XRD
- Chemical composition
 - ICP-OES, XRF, Laser
 - Ablation-MS
 - ICP-MS
- Mechanical
 - Flexural, compressive, tensile
 - Strength, modulus, hardness, wear

- Thermal
 - Expansion
 - DSC, DTA, TGA
- Electrical
 - Dielectric constant, loss tangent
 - Volume resistivity
- Microstructural analysis
 - Digital SEM
 - EDS
- Failure analysis

Core Business Strengths – Operational Excellence

OpX is a hybrid of several best-practice techniques including lean manufacturing, quality control systems, and six sigma/black belt continuous improvement.

ISO, QS, and TS-compliant manufacturing

State-of-the-art manufacturing facilities – over TWO MILLION square feet of manufacturing capacity worldwide!

Lean manufacturing techniques

Metric: 1Kg powder/1kW electricity

1 metric ton of powder = 1MW

1000 metric tons ~ 1GW

Mill Raw Materials

1MW/load, 1-2charges/day

1/2 GW/year

Spray Dry Milled Body

COORSTEK

2MW/hour

6-7 GW/year

Regulations

Chemical Handling

Water Treatment

Waste Disposal

400,000 fired ft/year

40MW/year

1/25 GW/year

1MW/2-3 days

1/10-1/5 GW/year

3-7 m/hour, 17cm wide

 $0.5 - 1.2 \text{m}^2/\text{hour}$

7-20MW/year

1/50 or less of a GW/year

300 ft/hour, 1ft wide 235 miles/year

>500 GW/year

- Develop strategic raw material infrastructure
- Design with cost-effective mfg.
 processes early on
- 10 GW by 2010? –
 we better get busy

Pathway to High Efficiency

5 cm² active area, isobaric Approximates a CSTR

- (1) F. Zhao and A. Virkar, J. Power Sources, 141 (2005) 79-95
- (2) M. Mogensen and P. Hendricksen, Fig. 10.7, High Temperature Solid Oxide Fuel Cells, Singhal and Kendall, Ed. (2004)

- Cell and short stack testing near I_{lim}
- Assess impact of design variants on η_e (tubular vs. planar)
- Evaluate cost/performance of raw materials (eg. pre-calcined 8YSZ vs. "reaction sintered")

- Test hydrocarbon fuels at high U_f
- Better understand anode oxidation
- Assess impact of gas impurities at high fuel utilization (eq. sulfur)
- Reallign power density expections (Can affordable systems be constructed at 100 mW/cm²?)

- Cost and Efficiency must me addressed together
- SECA cost targets must be met at >50% η_e
- Begin developing The Ceramic Manufacturing Industrial Base **NOW** (need ~ 10,000 tonnes by 2010)