Thermally Integrated High Power Density SOFC Generator

^{Ву} FuelCell Energy, Inc. Versa Power Systems, Inc.

At SECA Annual Meeting Pacific Grove, California April 18-21, 2005

Acknowledgements

Contributors

FCE: Pinakin Patel, Peng Huang VPS: Randy Petri, Brian Borglum GTI: Robert Remick, Kevin Krist MSRI/UU: Tad Armstrong, Anil Virkar PNNL: Prabhakar Singh

• Funding Support

- DOE-NETL: SECA Program
- California Energy Commission
- GTI, VPS, FCE

Program Objectives

- Technology Progress
 - Cell
 - Stack
 - System
- Summary

SECA Program Objectives

- Develop a kW-class SOFC power plant per SECA goals
- Natural gas as baseline fuel
- Thermal integration for higher efficiency
- Manufacturing cost reduction
- 9-year, 3-phase program

Cell Technology

- Long Term Testing (VPS)
- Modeling (PNNL)
- Cathode Development (MSRI-UU)
- Sulfur Tolerance (MSRI, GTI)
- Redox Tolerance (MSRI, VPS)

Long Term Cell Testing

Trend Data

26,000 hours of Operation

PNNL Modeling

Sulfur Tolerance of Anodes

- Anode tested with 1, 5, 10, and 100 ppm H₂S in fuel
- Performance degradation of ~6% with 10 ppm H₂S
- Degradation rate decreases with time until equilibrium is established
- Complete recovery with sulfur free fuel
- No permanent degradation or failure of anode observed

•Cycled between H_2 and H_2 with 10ppm H_2S

Effect of H₂S Poisoning on Cell Performance

Stack Technology

Stack Design for Greater Output (VPS)

Triple Mode Cooling (VPS-FCE)

Radiative Cooling (CEC Program)

• Thermal Cycling (MSRI, VPS)

Gasket Development (MSRI, FCE, VPS)

Stack Design For Greater Power Output

Aurora Stack	3-1 Stack
84-cell single tower with 4 stack modules	112-cell single tower with 4 stack modules
21-cell stack module	28-cell stack module
0.33 A/cm ²	0.36 A/cm ²
2600 W DC gross BOL	3800 W DC gross BOL

50% Increase In Stack Power

Benefits of Triple Mode Cooling: 2 kW Aurora System

Impact Of DIR On Cell Temperatures

Temperature mapping performed on middle cell of a 5-cell, 121 cm² active area stack with city natural gas

- 0-25% DIR has high DT: hot spot at AO/FI corner
- 75%-100% DIR has high DT: cold spot at AI/FI
- 50% DIR has lowest DT: optimal voltage vs. degradation balance

FuelCell Energy

Stack Operation With 100% Methane DIR

CEC Project: Radiative Cooling

- Goals: Prove concept of radiant air pre-heaters at multi-kilowatt sizes (Higher power density, Lower operating temperature, Lower costs)
- Design 10 kW power module
- RAP/Stack module Tests at GTI and MSRI
- Kevin Krist of GTI will Present CEC Progress on Wednesday at 4:30 pm

Radiative Cooling For Stack

- Preheat Air With Radiation From Stack (RAP)
- Decreased Thermal Stresses
- Reduced Cooling Air Flow

Thermal Cycling of Stacks

Number of thermal cycles

- 5-cell stack
- Tested at 800 °C
- Newly developed metal seal
- 98% sealing efficiency of hydrogen gas

Stack Repeat Unit Testing – 50 Thermal Cycles over 5000 hours

Glob 101196 Oven #18, (September 23, 2003 - April 26, 2004)

Gasket Test Facility

Set Up for Controlled Test Conditions

Distributed Energy Generation

FuelCell Energy

Normalized Gas Leak Rates of PH-2 Gasket

An Order of Magnitude Better Than Mica Gasket

Composite Gasket: Performance on Helium

Single Cell Longevity Testing of Glass-Ceramic Seal - 750°C

- Basis: Natural Gas Fuel, Grid Parallel Operation
- Aurora System with Radiative HEX (2 kW- net AC)
- Baseline System (3 kW-net AC)
- Advance System (10kW-net AC)

Aurora & 3-1 Hot Power Module & T/C Layout

with RadHEX

Aurora System Operation On Natural Gas

Scale-up to 3 kW

3 kW_{net} system commissioning underway

10 kW Advance System

Parker Blower to be Used as a Baseline

Developed for use with PEM Fuel Cells Maximum Temperature Rating of 120°C

Regenerative Fuel HX

- Current Specifications call for a working range of 750°C inlet to 200°C outlet.
- Four vendors have been identified
 - Small size is a problem not a typical product
 - Temperature range limits manufacturing methods to welding – not brazing
 - Small initial sales volume is a problem for cost reduction

Hydrocarbon Variability

Composition	Full Range	80% Range	
Methane	73 to 99%	89 to 97%	
Ethane	0.5 to 13%	3% 1 to 5%	
Propane	0 to 8%	0.2 to 2%	
C ₄ and above	0 to 13%	0.1 to 2%	
Unsaturated	0 to 7%	Trace	
Hydrogen	0 to 4%	<0.01%	
Nitrogen	0 to 10%	0 to 3%	
CO ₂	0 to 2%	0 to 2%	
HHV Btu/SCF	970 to 1200	1000 to 1050	

Odorant Analysis: Natural Gas at NETL

Component Name	PPMV
Ethyl Mercaptan	0.10
T-Butyl Mercaptan	0.37
Dimethyl Sulfide (DMS)	0.23
Methyl Ethyl Sulfide	0.84
Diethyl Sulfide	0.97
Dimethyl Disulfide	0.13
Thiophene	0.29
Thiophane	1.14
Others	0.57
Total	4.64

Impurities

Composition	Full Range	80% Range
Odorants	2 to 12 ppmv	2 to 10 ppmv
Total Sulfur	2 to 17 ppmv	2 to 12 ppmv
H ₂ O, Ib/MMSCF	0.5 to 10	0 to 8

Odorant Removal

- Copper impregnated adsorbents work well but have a low capacity for DMS.
- Mole sieve adsorbents for DMS are expensive.
- Hydrodesulfurization (HDS) could be a universal odorant removal system but it requires hydrogen, doesn't handle unsaturated hydrocarbons well, and will overheat if propane-air is injected.

Summary

- Single Cell Operation using SS Interconnects Demonstrated for 26,000 hours (Degradation Rate: 1.3% per 1000 hr)
- Performed 50 Thermal Cycles in a Stack Repeat Unit During 5000 hours of Operation
- Work Initiated in Improving Redox and Sulfur Tolerance of the Anode Verified
- The 112 cell Stack Tower Showed a 50% Increase in Power Output(3.8 kW/Stack Tower)
- Aurora System Operated for 1600 + hours on Natural Gas Fuel and in Grid Parallel Mode

Approach to Advanced Cathodes

- Novel materials.
- Transport and adsorption properties; focus on materials with strong tendency for oxygen adsorption.
- Particle size and morphology; inter-particle contact.
- Microstructure stability at elevated temperatures.
- Introduction of electro-active species by infiltration.
- Identification of electro-active materials using patterned electrodes.

Electrolyte

Introduction of aqueous salt solutions into porous cathode

Electrolyte

Firing to form nanosize particles of electro-active materials

Performance of a button cell (2 cm² cathode) at 800°C

UNIVERSITY OF UTAH Distributed Energy Generation

TH

Patterned Electrodes – Impedance Spectroscopy – Charge Transfer Resistivity

Impedance spectra at various pO2

Charge transfer resistivity as a function of temperature and pO2

Collaborative work: University of Utah and PNNL

FuelCell Energy

Development of Redox Tolerant Anodes

- Standard Ni-YSZ anodes tested for redox tolerance
- Tested at 600-800 °C
- Cells mechanically fail
 - Electrolyte microcracks
 - Anode support weakened
 - Some delamination
- Mechanism: expansion of Ni during oxidation microcracks YSZ in anode

Development of Redox Tolerant Anodes

- New anode compositions have been developed
- Exhibit better redox tolerance
 - Anode support mechanically intact after redox cycling
 - No microcracking of electrolyte
 - Delamination has been suppressed
- Future work
 - Improve anode strength after deep redox cycles
 - Optimize compositions and microstructure

Glass-Ceramic Seal Thermal Cycling Testing – 750°C

	Cell Voltage (mV) at			
Thermal Cycle Number	Open Circuit	0.74A/cm2, low Uf	0.5A/cm2, 50% Uf, 25% Ua	0.5A/cm2, 70% Uf, 35% Ua
0	1.078	788	795	748
1	1.078	799	803	759
5	1.072	794	801	759
15	1.073	783	793	753
25	1.080	780	792	759

Limited Rights Data

Sealing Requirements in SOFC

 Within designed leakage tolerance over the life of the stack at both steady state and transient operating conditions Gastight • Thermal, chemical More than 10⁵ ohm-cm and mechanical to avoid possible Sealing **Stability** stability to stack in SOFC current leakage and components and cell shortening conditions **Compressibility** More than 30% to allow deformation for stack assembly requirements **Development of a high** temperature seal

Development of a high temperature seal requires integrated solutions to these requirements

Composite Seal Test

Green tape of MSRI composite seal

- 800°C, H₂ gas maintained at 4 kPa

- Thermally and mechanically robust
- Flexible configuration
- Tape cast, easy manufacturing, and low cost

