

Power Electronic Technologies for Fuel Cell Power Systems

Presentation at
SECA 6th Annual Workshop
Pacific Grove, California
April 19, 2005

Dr. Jih-Sheng (Jason) Lai
Director, Future Energy Electronics Center
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0111

TEL: 540-231-4741 FAX: 540-231-3362 Email: laijs@vt.edu

Future Energy Electronics Center

Outline

- 1. Basic Fuel Cell Power Systems
- 2. Non-isolated DC-DC Converters
- 3. Isolated DC-DC Converters
- 4. DC-DC Converter Implementation Issues
- 5. Basic DC-AC Inverters
- 6. Fuel Cell and Converter Interactions
- 7. Fuel Cell Energy Management Issues
- 8. Advanced V6 DC-DC Converter
- 9. Fuel Cell Current Ripple Issues
- 10. Recap

Stationary Fuel Cell Power Plant for Telecom Applications

- Fuel cell output or converter input is low-voltage DC with a wide-range variation
- Plant output is 48-V DC
- Isolation may or may not be needed

Virginia ∭Tech Future Energy Electronics Center **Stationary Fuel Cell Power Plant for Household Applications** DC/DC converter LV-DC **HV-AC** q_{μ} ٠..٠. HF AC-DC DC-AC Full Xformer 120V **Fuel** Rectifier Inverter -240V Bridge V_{in} Cell 120V Converter Filter **Filter** AC-DC DC-AC AC-AC DC-AC HV-HV LF-HF LV-HV HV-HV

- Plant output is high-voltage ac
- Multiple-stage power conversions including isolation are needed

كىك

Virginia Tech

Major Issues Associated with the Power Conditioning Systems

- Cost
- Efficiency
- Reliability
- Isolation
- Fuel cell ripple current
- Transient response along with auxiliary energy storage requirement
- · Communication with fuel cell controller
- · Electromagnetic interference (EMI) emission

تكى

Future Energy Electronics Center

2. Basic Non-Isolated DC-DC Converters

- Buck Converter Output voltage is always lower than input voltage
- Boost Converter Output voltage is always higher than input voltage
- Buck-boost Converter Output voltage can be either lower or higher than input voltage

كى

Basic Principle of Buck Converter

Average output voltage:

$$V_o = DV_{in}$$

where D is the duty ratio. Because D < 1, V_o is always less than $V_{in} \rightarrow$ buck converting

 T_s : switching period = $1/f_s$ (s) f_s : switching frequency (Hz)

Future Energy Electronics Center

A Buck Converter Example

- Input is 48 V, and output is 24 V
- Duty cycle $D = V_o/V_{in} = 0.5$
- Switching frequency = 100 kHz
- Output power = 150 W
- Inductor and capacitor are designed to limit the current and voltage ripples

Basic Principle of Boost Converter

Average output voltage:

$$V_o = \frac{1}{1 - D} V_{in} = \frac{1}{D'} V_{in}$$

where D is the duty ratio, and D' = 1 - D. Because D' < 1, V_o is always greater than $V_{in} \rightarrow$ boost converting

Virginia Tech

Future Energy Electronics Center

A Boost Converter Design Example

- Input is 6 V, and output is 48 V
- Duty cycle $D = 1 V_{in}/V_o = 0.875$
- Switching frequency = 100 kHz
- Output power = 180W
- Inductor and capacitor are designed to limit the current and voltage ripples

Circuit Diagram of Buck-boost converter

The output voltage can be expressed as

$$V = \frac{D}{1 - D} V_{in} = \frac{D}{D!} V_{in}$$

/13

Future Energy Electronics Center

Synchronous Rectifier

- MOSFET can be used as a diode by shorting G-S
- However, when running under diode mode, gating between G-S would allow current to flow through S-D channel in reverse direction → synchronous rectification

كى كى

Features of Synchronous Rectification

- MOSFET voltage drop is resistive and can be as low as possible, such as <0.1 V.
- The voltage drop is very crucial to the converter efficiency in a low voltage system. For example, a diode with a fixed voltage drop of 0.7 V represents 3.5% loss of a 20-V system.
- Synchronous rectification allows the voltage drop to be a function of MOSFET resistance and current and cuts the conduction loss substantially. For example, a MOSFET with 5 m Ω running at 20 A condition, the voltage drop is 0.1 V, much less than diode voltage drop.
- Suitable for low-voltage systems.

15

Virginia Tech

Future Energy Electronics Center

Circuit configuration of a Boost Converter with Synchronous Rectification

- D₁ and D₂ are body diode of Q₁ and Q₂.
- Q₁ and Q₂ switch complimentary

Experimental Results of a DC-DC Converter with and without SR

Efficiency is improved by 7% with Synchronous Rectification

/_

Future Energy Electronics Center

3. Isolated DC-DC Converters

- Why isolation is needed?
- Push-pull DC-DC converter
- Half-bridge DC-DC converter
- Full-bridge DC-DC converter

Isolation is Required for Most Systems

- High voltage conversion ratios
 - Isolation allows better device utilization
- Grounding requirement
 - Isolation avoids noise coupling
- Safety requirement
 - Isolation allows meeting safety standards
- Multiple outputs
 - Isolation transformer allows multiple secondary windings

تحك

/10

Future Energy Electronics Center

Problems with Isolation

- Magnetic component design and cost are non-trivial
- Transformer saturation due to unbalance input
- Additional losses
- Additional terminations

Basic Operating Principle of a Push-Pull Converter

Switches conduct alternately

dead-time, current circulating thru anti-paralleled diodes

/2:

Virginia Tech

Future Energy Electronics Center

Push-Pull DC/DC Converter

20V > 250A $\frac{i_L}{V_{in}} = \frac{1}{2} = \frac{1}{2$

- + Simple non-isolated gate drives
- + Suitable for low-voltage low-power applications
- Device sees twice input voltage need high voltage MOSFET
 - > High conduction voltage drop, low efficiency
- Center-tapped transformer
 - ➤ Difficult to make low-voltage high-current terminations
 - > Prone to volt-second unbalance (saturation)

عی ا

Future Energy Electronics Center

A Push-Pull Converter with Paralleled Devices

- Input 28 to 35 V
- Device voltage blocking level 100 V
- Efficiency <85% even with 4 devices in parallel

1/2

Full-Bridge Converter with Paralleled Devices to Achieve Desired Power Levels

- Multiple devices in parallel to achieve desired high efficiency
- Problems are additional losses in parasitic components, voltage clamp, interconnects, filter inductor, transformer, diodes, etc.

__.

Future Energy Electronics Center

Design Considerations for Isolated DC-DC Converters

- Transformer turns ratio
- Transformer core utilization
- Device voltage stress
- Device current stress
- Output diode voltage stress
- Voltage clamping

كى

Pulse Width Modulation for Isolated DC-DC Converters

The average output voltage

$$V_o = DnV_{in}$$

Where

 $n = \text{transformer turns ratio} = n_2/n_1$

$$D = \text{duty ratio} = t_{on}/T$$

and

 n_1 = number of turns of primary winding

 n_2 = number of turns of secondary winding

 t_{on} = switch turn-on time

T =switching period

يري ا

/31

Virginia Tech Future Energy Electronics Center

Transformer Core Utilization

× Forward: **<50%**

× Flyback: <50%

✓ Half-bridge: 100%

✓ Push-pull: 100%

✓ Full-bridge: 100%

Device Voltage and Current Stresses

Device voltage stress

× Push-pull: 200%

√ Half-bridge: 100%

✓ Full-bridge: 100%

Device current stress

× Half-bridge: 200%

✓ Push-pull: 100%

✓ Full-bridge: 100%

Output diode voltage stress

× Center tap: 200%

√ Bridge: 100%

/3:

Future Energy Electronics Center

Voltage Clamping

- Problems of diode over voltages
 - Full-bridge
 - Center-tapped
- Voltage clamping methods
 - Passive clamping method
 - Active clamping method

Over-Voltage Caused by the Transformer Leakage Inductance

- v_1 : Primary side voltage
- v_2 : Secondary side voltage v_2 , $v_2 > v_o$.
- v_d : Voltage stress of upper diodes (D_5, D_7) when lower diodes (D_6, D_8) conduct, or vice versus, $v_{d-pk} > v_{2-pk} > v_0$, due to leakage inductance voltage drop.

35

Virginia Tech Future Energy Electronics Center

Full-Bridge Diode Rectifier Over-Voltage Clamping

Advantage: Diode voltage stress is significantly reduced.

Disadvantage: Added cost and complexity.

Fuel Cell System Example for Topology Selection

Question: With 48 V fuel cell voltage and 400 V dc output, what topology is the best?

Answer: Intuitively, push-pull converter is the best because of least parts count. However, with device availability and cost consideration, full-bridge converter may be a better choice.

Reason: For low-side power MOSFET, lower voltage is more cost effective. Similarly, for high-side diode, lower voltage is more cost effective.

كى ئ

//27

Future Energy Electronics Center

4. Implementation Issues in High Power DC/DC Converters

- Controller output duty cycles tend to be unbalanced due to internal chip layout, resulting transformer saturation.
- · Voltage sensing problem:
 - Feedback voltage signal tends to be corrupted by noises
 - Hall sensor is expensive
 - Common mode and isolation are difficult to deal with resistor dividers
- Current sensing problems:
 - Lossy with resistor sensing
 - Difficult to insert Hall sensor for device current measurement

Full-bridge Converter Design Example

- Specifications:
 - Input fuel cell voltage ranges from 36 V to 60 V
 - Output: 400 V, 10 kW
- Current
 - Output: 25 AInput: 208 A

39

- Power MOSFET
- Rectifier diode
- Transformer
- Filter inductor
- Filter capacitor

/

Survey of High Current Power MOSFETs

Manufacturer	Part Number		$V_{DSS}\left(\mathbf{V}\right)$	R_{DS-on} (ms	2) Packag	e	
Fairchild	FDB045AN08A0		75	4.5	TO-263		
International Rectifier	IRFP2907		75	4.5	TO-247	TO-247	
Fairchild	FDP047AN08A0		75	4.7	TO-220	TO-220AB	
IXYS	FMM 150-0075P		75	4.7	ISOPLU	ISOPLUS i4-PAC [*]	
Vishay Siliconix	SUM110N08-05		75	4.8	TO-263	TO-263	
IXYS	IXUC160N075		75	6.5	ISOPLU	ISOPLUS 220	
International Rectifier	IRF3808		75	7.0	TO-220	TO-220AB	
Fairchild	FQA160N08		80	7.0	TO-3P	TO-3P	
Quantity	1	100	1000	25,000	50,000	100,000	
FDB045AN08A0	\$3.50	\$2.50	\$2.40	\$2.30	\$2.10	\$1.60	
IRFP2907	\$4.49	\$3.96	\$3.07	\$3.07	\$3.07	\$2.89	
FDP047AN08A0	\$3.50	\$2.50	\$2.40	\$2.30	\$2.10	\$1.60	
FMM 150-0075P	\$8.00	\$7.00	\$6.19	\$5.79	\$5.30	\$5.03	
SUM110N08-05	\$2.70	\$2.50	\$2.50	\$2.35	\$2.19	\$2.19	
IXUC160N075	\$4.00	\$3.00	\$2.05	\$1.65	\$1.49	\$1.40	
IRF3808	\$2.29	\$2.16	\$1.80	\$1.50	\$1.30	\$1.17	
FQA160N08	\$4.00	\$3.00	\$2.90	\$2.60	\$2.50	\$2.20	

*Note: IXYS FMM 150-0075 is a dual pack (half bridge) device.

//

Future Energy Electronics Center

Survey of Ultrafast Reverse Recovery Diodes

Manufacturer	Part Number	V_F	t_{rr}	I	Package
Fairchild	RHRG5060	1.5 V	45ns (max)	50 A	TO-247
International Rectifier	HFA50PA60C	1.9 V	23ns (typ)	50 A	TO-247AC
IXYS	DSEK 60-06A	1.6 V	35ns (typ)	60 A	TO-247AD

Quantity	1	100	1000	25,000	50,000	100,000
RHRG5060	N/A, (300 part min)		\$3.50	\$1.75	\$1.50	\$1.50
HFA50PA60C	\$8.81	\$8.22	\$7.71	\$7.61	\$7.25	\$4.00
DSEK 60-06A	\$4.00	\$3.00	\$2.50	\$2.07	\$1.99	\$1.90

Output Filter Capacitor Selection Typically based on the output voltage ripple

- Typically based on the output voltage ripple

- The output filter capacitor needs to handle 120 Hz, 22 A ripple current generated from the next stage inverter.
- Assume the voltage ripple is limited to 5%. The capacitance can be calculated as

$$C = \frac{\Delta I}{8 f \cdot \Delta V} = \frac{22}{8 \cdot 60 \cdot 400 \cdot 0.05} = 2.2 \text{ mF}$$

نكى

//2

Future Energy Electronics Center

Digital Computer Implementation for High Power DC/DC Converters

- Digital computer such as DSP has become a good option for high power DC/DC converter control implementation
- Feedback voltage signal can be converted to digital and through PWM feeding back to DSP to avoid noise corruption
- Even if commercial PWM or PSM chips are used, the control signal can be obtained from DSP through D/A conversion
- Communication with digital signals has become the essential part between the dc/dc converter and the fuel cell controller or other power converters

ر کی کانے

Controller Design for a Typical Converter

$$G_p(s) = \frac{K}{1 + \sqrt[S]{Q^+ s^2}} \qquad j = \sqrt{-1}$$

$$s = j\omega = 2\pi f \qquad f = \text{frequency}$$

$$G_c(s) = K_p + \frac{K_i}{s}$$
 (A standard PI controller)

Digital Controller for a Typical Converter

$$G_c(z) = K_p + K_i \frac{T_s}{2} \frac{z+1}{z-1}$$
 $T_s = \text{switching frequency}$

$$T_{\rm s}$$
 = switching frequency

$$s = \frac{2}{T_s} \frac{z - 1}{z + 1}$$

DC-DC Converter Control System Design is Challenging with the Fuel Cell Source

- A typical controller is designed with low input voltage and heavy load condition.
- When the load is reduced, the fuel cell voltage increases, and the original controller design may be inadequate due to input voltage variation.
- Increasing the input voltage is equivalent to increase the closed-loop gain and tends to worsen the phase margin, and the system can eventually become unstable.

كك

/10

Future Energy Electronics Center

5. DC/AC Inverters

- Single-phase output
 - Half-bridge
 - Full-bridge
- Dual single-phase outputs
 - Dual half-bridge
 - Three-leg inverter
- Load Effect
 - Linear loads
 - Nonlinear loads

نكى

Half-Bridge DC-AC Inverter with Split DC Buses

Maximum output peak voltage $V_{max} = V_{dc}/2$

- Simple dc-ac Inverter with minimum switch counts
- Split dc buses should be very stiff and balance to avoid dc or even harmonics at the ac output
- Control is limited to the ordinary sinusoidal pulse width modulation (SPWM)
- Cost burden is in passive components

75′

Sinusoidal Pulse Width Modulation 280 Gating signal SEL>> 80 U(Uo1) V_c: carrier wave 5.80 1.8ms 2.8ms 3.8ms 4.8ms 1.0ms v_{sin} > v_c, gate signal is high, and IGBT is turned on; Otherwise, gate signal is low and IGBT is turned off.

Single-Phase Full-Bridge DC-AC Inverter

Compared with Half-Bridge inverter, FB inverter features

- Simple dc-ac Inverter with more switch counts, but less bulky capacitors
- Control is more flexible to have phase-shifted SPWM for two individual legs – Dual Modulation Method.
- Size of passive components may be reduced

<u>/5</u>:

Future Energy Electronics Center

Dual Single-Phase Outputs with Dual Half-Bridge Inverters

- ✓ Only one set of split dc buses are required
- ✓ Q_1 - Q_2 and Q_3 - Q_4 pairs need to be switched complementary so that the total $v_{ac} = v_{ac1} + v_{ac2}$.
- Possible unbalanced output ac voltages under unbalanced load conditions

ے کانے

Future Energy Electronics Center

Three-leg Inverter for Dual AC Outputs with Single DC Bus

- Similar to full-bridge inverter with more switch counts, but less bulky capacitors
- Outer legs do SPWM to produce vac output. Middle leg is controlled to equalize v_{ac1} and v_{ac2}
- Control is more complicated to ensure output voltage balance
- Size of passive components may be reduced

755

Future Energy Electronics Center

Using Low-Frequency Transformer for Low-Voltage AC Inverter Output

Features:

- Low-frequency transformer allows low-voltage DC to be directly converted to AC
- · Output can be single or dual
- Size is the major concern

Implications of VAR

- Average VAR = 0 → No real power output
- VAR loads are typically inductive such as motors, magnetic ballasts, relays, etc.
- The current associated with VAR causes additional heat losses in the wiring and the internal impedance of the source
- Inductive VAR can be compensated with capacitive VAR, but not without complexity
- Nonlinear loads also introduce VAR

61

Inverter Output Voltage Under Nonlinear Rectifier Load

- Single-phase nonlinear load current is rich with odd harmonics (3,5,7,...) especially with the 3rd harmonic
- The voltage waveform is flatten up due to nonlinear current.

<u>/6</u>:

Future Energy Electronics Center

Voltage Waveform Quality may be Improved with Closed-loop Control

Closed-loop control can smooth the voltage waveform but the nonlinear current waveform remains nasty.

رى

6. Fuel Cell and Converter Interactions

- Static modeling
- Dynamic modeling
- Fuel cell dynamic response with and without converters

//c=

Future Energy Electronics Center **SOFC Voltage-Current Characteristic as** a Function of Temperature 1.1 SOFC 0.9 8.0 PEMFC 0.7 0.6 700°C 0.5 0.4 0 0.2 0.4 0.6 8.0 1 1.2 1.4 1.6 1.8 Current (A/cm²)

Data source: DOE SECA Modeling team report at Pittsburgh Airport, 10/15/2002

Fuel Cell Responds with a Paralleled 10mF Electrolytic Capacitor

Note: Fuel cell output voltage response is slowed down to 30ms. Capacitor takes over the transient current.

Future Energy Electronics Center

Findings of Fuel Cell Modeling and Converter Test Results

- Fuel cell stack shows very fast dynamic, nearly instantly without time constant
- Perception of slow fuel cell time constant is related to ancillary system not fuel cell stack
- Output voltage dynamic is dominated by the converter interface capacitor and cable inductor
- Output current dynamic is dominated by the load

ترى ت

Issues to be Resolved in a Fuel Cell Power Conditioning System

- Energy management system options Sizing of converters and auxiliary sources
- Advanced Bidirectional dc-dc converter technologies
- Interleaved control and associated technologies
- Digital control for high power dc/dc converters
- Fuel cell voltage standardization
- Fuel cell ripple current specifications
- Fuel cell output voltage dynamic
- Fuel cell and power conditioning interface and communication protocol

كك

/79

Future Energy Electronics Center

7. Fuel Cell Energy Management Issues

- Problems without Slow Fuel Cell Response and Auxiliary Energy Storage
- Options of Energy Storage Placement
- Energy Management options with Bidirectional DC/DC Converters

يرى ت

Why Fuel Cells Need Auxiliary Energy Source or Energy Storage?

- For standalone power supplies: need energy storage for load transient
- For grid-connected power supplies: need auxiliary energy source for start-up
- For all systems: need auxiliary energy source to provide power for control signals

ندی:

81

Future Energy Electronics Center

Problems of a Fuel Cell System without Energy Storage

- Fuel cell does not have storage capability
- Slow response, output voltage fluctuates with loads
- Source may not be continuously available
- Size (or capacity) needs to be higher than the peak load
- When sized enough for the maximum load, excess energy will be wasted

كى كەلت

A Slow and Weak Energy Source During Startup and Large Load Transient

Future Energy Electronics Center

Converter Step Load Response with Stiff Voltage Source and Voltage Loop Control

With voltage control loop bandwidth designed at 20 Hz, settling time is about 40ms under load step

Future Energy Electronics Center

Converter Load Dump Response with Stiff Voltage Source and Voltage Loop Control

With voltage control loop bandwidth design at 20 Hz, settling time is about 40ms under load dump

//₀ :

Virginia Tech A Fu

Future Energy Electronics Center

A Fuel Cell Power Plant with Energy Storage

Auxiliary Energy storage options

Fuel Cells Need Auxiliary Energy Storage for energy management

رىت

Potential Problems with Passive Energy Storage

- Low-side ultracap option:
 - Two voltage sources are paralleled not a good engineering practice
 - Time to reach equilibrium point is too long because dynamic characteristics of both sources are different
 - Ultra capacitor helps transient current sharing, but creates significant voltage and current ripples due to interaction between two voltage sources
 - Dynamic current sharing problem
- · High-side battery option:
 - Battery cell voltage balance problem
 - Battery state-of-charge management
 - Long-term battery life expectancy
 - Cost of battery is a concern

/89

Future Energy Electronics Center

Energy Management Options with Energy Storages and Power Electronics

- Optimum energy usage control
- Start-up control
- Load transient control
- Charging and discharging (bidirectional) controls for auxiliary energy storages

Design Considerations for Hybrid-Source Systems

- 1. Utilization of Primary Source
- 2. Simple Power Circuit (as simple as possible)
- 3. Voltage ratio
- 4. Isolation Requirement
- 5. Energy Storage Requirement
- 6. Inverter DC Bus Voltage Requirement
- 7. Cost

/91

Dual-Source Energy Management Using a Unidirectional Boost Converter

80kW converter High voltage 100kW Inverter

- Battery voltage > Fuel cell voltage
- Simple boost converter regulates the battery state of charge
- DC bus voltage is constant

Total power electronics: 80-kW DC/DC + 100-kW DC/AC Total energy sources: 20-kW battery + 80-kW fuel cell

/9

Virginia Tech Future Energy Electronics Center

An Example of Dual Sources with a Bidirectional DC-DC Converter

20kW Converter Fuel cell 100kW Inverter Fuel cell 4 AC Output

Battery voltage < fuel cell voltage → needs a boost converter to supply energy during transient load and a buck converter to charge the battery Fuel cell voltage = dc bus voltage → not regulated

- Total power electronics: 20-kW DC/DC + 100-kW DC/AC
- Total energy sources: 20-kW battery + 80-kW fuel cell

Interleaved Bidirectional DC/DC Converter for Fuel Cell Energy Management

20kW converter

Interleaved operation for both boost and buck modes -

- smaller passive components;
- less battery ripple current
- Total power electronics: 20-kW DC/DC + 100-kW DC/AC
- Total energy sources: 20-kW battery + 80-kW fuel cell

*/*0,

Virginia Tech

Future Energy Electronics Center

DC Bus Voltage During 800-W Load Step and Load Dump Under Boost Mode Operation

DC bus voltage fluctuates but returns to original setting after load transients

كك

Battery Voltage During 800-W Battery Charge Command Step under Buck Mode Operation

Battery voltage keeps constant during severe charging and discharging current conditions

*/*07

Future Energy Electronics Center

8. Advanced V6 Converter

- Single-Phase Half-Bridge Converter
- Two-Phase Full-bridge Converter
- Three-Phase Converter
- V6 Converter
- Test Results with V6 Converter
- V6 Converter Prototype

Full-Bridge Converter with Paralleled Devices to Achieve Desired Power Levels

- With 6 devices in parallel, the two-leg converter can barely achieve 95% efficiency
- Problems are additional losses in parasitic components, voltage clamp, interconnects, filter inductor, transformer, diodes, etc.

~101

Virginia Tech Future Energy Electronics Center **Fuel Cell Voltage and Current with Full Bridge Converter Case** 15A Filter inductor current AC load current □ I(Ld3) ♦ V(Iac) 150A 100A 330% 50A SEL>> -50A Input capacitor current □ I(Cin) 60A 33% 40A Fuel cell curren 20A Load step oad dump. □ -I(Vfc) 30V Fuel cell voltage 10ms 4ms □ V(Vfc) Time

Virginia Tech

Switching Waveforms with Full-Bridge Converter

Virginia Tech Future Energy Electronics Center A Three-Phase Bridge Converter 20V >167A Fuel Cell or other voltage source 1:n Active Load В v_{in} $D_A \mathbf{L} D_6$ HF AC 3-phase bridge inverter Xformer Rectifier+LC filter Hard switching With 4 devices in parallel per switch Efficiency ≈ 95%

Time

Key Features of Multiphase Converter

- Device is switched at a lower current, while maintaining zero-voltage switching.
- High-frequency capacitor ripple current is reduced by >4x, and its frequency is increased by 3x. This translates to significant capacitor size reduction and cost saving.
- No effect on low-frequency AC current ripple, which remains an issue to be solved.

کی ک

Key Features of V6 Converter

- Double output voltage → reduce turns ratio and associated leakage inductance
- No overshoot and ringing on primary side device voltage
- Input side high-frequency ripple current elimination → cost and size reduction on high-frequency capacitor
- Output DC link inductor current ripple elimination → cost and size reduction on inductor
- Secondary voltage overshoot reduction → cost and size reduction with elimination of voltage clamping
- Significant EMI reduction → cost reduction on EMI filter
- · Soft switching over a wide load range
- High efficiency ~97%
- Low device temperature → High reliability

109

Future Energy Electronics Center

Waveform Comparison between Full-Bridge and V6 Converters

- Secondary inductor current is ripple-less; and in principle, no dc link inductor is needed
- Secondary voltage swing is eliminated with <40% voltage overshoot as compared to 250%

Significant DC link Inductor Size Reduction

With V6 converter, an effective 10x reduction in DC link filter inductor in terms of cost, size and weight

/11

Virginia Tech

Future Energy Electronics Center

Input and Output Voltages and Currents at 1kW Output Condition

(a) Full bridge converter

(b) V6 Converter

Significant improvement with V6 converter

- ✓ Less EMI
- ✓ Better efficiency (97% versus 87% after calibration)

لكى

Where are the Losses?

- Switch conduction
- Diode conduction
- Transformer
- Output rectifier
- Output filter inductor and capacitor
- Input capacitor
- Parasitics
 - Copper traces
 - Interconnects

ي كى كى كى

/111

Future Energy Electronics Center

Calorimetry for Accurate Loss Measurement

كى

Virginia Tech

Future Energy Electronics Center

The Beta Version Prototype Converter

- Schematic Circuit Diagrams
- V6 Cost Estimate
- Summary of Beta Version Prototype

Prototype and Production Cost Estimate for the 5-kW V6 DC-DC Converter

Quantity	100	1000	10000
Material cost	\$475	\$347	\$227
Tooling, Assembly & Testing	\$1,424	\$347	\$114
Production Cost	\$1,899	\$694	\$341

Key Materials	Parts Count	Qty 1	Qty 10000
Power Circuit	22	\$571.00	\$154.40
Devices	8	\$201.00	\$38.40
Capacitors	6	\$84.00	\$30.00
Transformers	3	\$180.00	\$45.00
Inductors	2	\$24.00	\$8.00
Sensors	2	\$32.00	\$8.00
Contactor	1	\$50.00	\$25.00
Control Circuit	325	\$113.70	\$33.22
Resistors	164	\$18.59	\$2.71
Capacitors	110	\$46.61	\$17.41
Discretes	27	\$8.00	\$2.42
IC's	24	\$40.50	\$10.68
Miscellaneous	55	\$174.80	\$52.44
Total	402	\$840.50	\$227.05

/12

Virginia Tech

Future Energy Electronics Center

9. Fuel Cell Current Ripple Issues

- Current ripple propagates from AC load back to DC side
- With rectification, ripple frequency is 120 Hz for 60 Hz systems
- Low-frequency ripple is difficult to be filtered unless capacitor is large enough

AC Current Ripple Problems

- Inverter AC current ripple propagates back to fuel cell
- Fuel cell requires a higher current handling capability
 → Cost penalty to fuel cell stack
- Ripple current can cause hysteresis losses and subsequently more fuel consumption → Cost penalty to fuel consumption
- State-of-the-art solutions are adding more capacitors or adding an external active filters → Size and cost penalty
- Virginia Tech solution is to use existing V6 converter with active ripple cancellation technique to eliminate the ripple → No penalty

/12

Solutions to Ripple Currents

- Add more capacitors (ultra capacitor) on the low-side dc bus
- Add more capacitors on the high-side dc bus
- Add one more stage DC-DC converter
- Add an active ripple cancellation circuit
 - with a bidirectional DC-DC converter to stabilize the high-side dc bus voltage
 - with a built-in control function in the DC-DC converter

كى

125

Future Energy Electronics Center

Benchmark DC/DC Converter Parameters for Ripple Study

Input Voltage: 25V

Output Voltage: 200V

Input DC Capacitor: 6mF

Output DC Capacitor: 2200mF

• Filter Inductor: 84mH

Inverter Modulation Index: 0.86

Inverter Load Resistor: 16.7Ω

Features of High-Voltage DC Bus Energy Storage Capacitors

- Fuel cell voltage is low, typically from 36 to 60 V.
- High voltage dc bus voltage is split into two 200 V.
- For a single-phase dual ac outputs such as 120/240 V in US residential systems, the transformer secondary and dc bus can be split in two halves. Each phase leg of the full-bridge along with the split-capacitors becomes a half-bridge inverter to supply 120 V ac output. Summing two 120 V outputs becomes 240 V.
- Multiple capacitors are paralleled for the high-voltage dc bus to store more energy and to provide more transient handling capability during dynamic load change conditions. Energy storage is proportional to CV2.
- Size and weight are dominated by passive components. With split DC buses, the volume of energy storage capacitors becomes an issue.

Future Energy Electronics Center

Experimental Current Ripples without Adding Capacitors or Controls

More than 35% ripple current at the input

Fuel Cell Ripple Current Problem is Severe During Load Transients

- For single-phase ac loads, 120 Hz (twice the fundamental frequency) current ripple can reflect back to fuel cell.
- During load transients such as turning on light bulbs or starting up motors, the transient initial current is typically more than 5 times the steady-state current, and the fuel cell ripple current exceeds more 100% or even 200% in some cases.

133

Virginia Tech Future Energy Electronics Center

Fuel Cell Responds to AC Load Steps (without Externally Added Capacitor)

Fuel cell sees severe current transient (spike) and current ripple in steady state (35%)

Fuel Cell Current Ripple Reduction with the Proposed Active Control Technique

Fuel Cell Current Ripple is Reduced to 2%

*/*1/1 ·

Future Energy Electronics Center

Summary of V6 DC-DC Converter with Active Ripple Cancellation

- High efficiency with a wide-range soft switching: 97%
- Cost reduction by cutting down passive components
 - Output inductor filter reduction with three-phase interleaved control: 6X
 - Input high frequency capacitor reduction: 6X
 - Output capacitor reduction with active ripple reduction: 10X
- Reliability enhancement
 - No devices in parallel
 - Soft-start control to limit output voltage overshoot
 - Current loop control to limit fuel cell inrush currents
- Significance to SOFC design
 - Stack size reduction by efficient power conversion and ripple reduction: 20%
 - Inrush current reduction for reliability enhancement

10. Recap

- 1. Basic DC-DC converters and DC-AC inverters are introduced
- 2. Circuit topology selection can be misled by schematic diagram. Some important considerations are
 - Device voltage and current stresses
 - Number of paralleled devices
 - Parasitic components and losses
- 3. Advanced V6 DC-DC converter not only shows superior performance but also low production cost
- 4. Fuel cell current ripple issue can now be solved with advanced current control developed by Virginia Tech without adding cost penalty

تحك