A Method for Measurement of Fine Aerosol H₂O Content: The Dry-Ambient **Aerosol Size** Spectrometer (DAASS)

Authors

Charles Stanier

University of Iowa Chemical and Biochemical Engineering charles-stanier@uiowa.edu

Andrey Khlystov

Duke University Civil and Environmental Engineering andrey@duke.edu

Spyros Pandis

University of Patras, Greece Carnegie Mellon University Chemical Engineering spyros@andrew.cmu.edu

Abstract (1)

- Hygroscopic growth of atmospheric particles affects a number of environmentally important aerosol properties.
 - But aerosol water content is typically estimated, not measured, using models and assumptions that may be in error – therefore, we want to measure the water content.
- The system
 - Consists of two Scanning Mobility Particle Sizers (SMPS) and an Aerodynamic Particle Sizer (APS) covering 3 nm to 10 micron
 - Inlets either ambient RH or dried through Nafion driers (switched every 7.5 minutes)
 - Sheath air RH for SMPS also dried or ambient
- Aerosol water is measured and growth factors are calculated from the difference or ratio between aerosol volumes

Published As: Stanier, C., Khlystov, A., Chan, W.R., Mandiro, M., and Pandis, S.N., "A Method for the In-situ Measurement of Fine Aerosol Water Content of Ambient Aerosol: the Dry-Ambient Aerosol Size Spectrometer (DAASS)", Aerosol Science and Technology, Vol 28(S1), 2004, pp. 215-228.

Abstract (2)

- Benefits of combined system
 - When sampling in dry only mode
 - After data processing, provides a single dry number size distribution for the entire range
 - Aerosol volume through 2.5 microns was highly correlated with dried TEOM using this technique
 - When sampling in dry-wet mode, can calculate aerosol water
 - The measured value of aerosol water was found to be more accurate than f(RH) or modeled values in the following applications:
 - estimating light scattering
 - nitrate partitioning
 - physical state of the aerosol
 - Amount of absorbed water also used to calculate water uptake by organics

Organization of This Poster

Pittsburgh Air Quality Study (PAQS)

- 2 Year Collaborative Study
 - 17 Participating Groups
 - Funded by
 - Environmental Protection Agency
 - Department of Energy
- Main goals
 - Characterize Pittsburgh aerosols
 - Sources
 - Atmospheric Processes
 - Instruments
- Measurements
 - Meteorology
 - Atmospheric gases
 - Aerosol parameters
 - Particle size distribution, ambient relative humidity
 - Particle size distribution, dried

This Method Presented in this work

Pittsburgh Air Quality Study – Schenley Park Station

Particle Size Sampling Instruments

- Which "branch" or state are particles generally in
 - hydrated or dried?
- What is the crystallization relative humidity?
- How well can we model water uptake?
- What is the role of organic compounds in water uptake?

Dry-Ambient Aerosol Size Spectrometer

- Reconfigured commercial instruments
- RH control system
- Inlet particle losses characterization
- Custom control, data acquisition, and data reduction software

Dry-Ambient Aerosol Size Spectrometer

SMPS and APS Overlap

$$\frac{D_{st}}{C(D_{st})} = \frac{2ne\overline{V}L}{3\mu q_{sh} \ln\left(\frac{r_2}{r_1}\right)}$$

- Size Particles under very low Reynolds Number conditions
- ightharpoonup $F_{viscous} >> F_{inertial}$
- Mass & density do not effect measured size
- Only physical size and shape

$$D_{aero} \approx D_{st} \rho_p^{1/2}$$

Sizing under high Re Physical size, shape, and density matter

SMPS and APS Overlap

June 14, 2002 - 6 AM - 10 AM

Effective density for shift determined independently for each hour

Calculating Aerosol Mass with DAASS

Density estimate (for volume to mass conversion) made from speciation measurements (mainly OC and ammonium sulfate)

Comparison to Independent Measurement

Comparison to Independent Measurement

Example Result, Dry-Wet Operation

Example Results for Aerosol Water

Aerosol Water & Nephelometer B_{scat}

H₂O estimated as f(RH, Chemical Composition)

H₂O from DAASS measurement

- US Environmental Protection Agency Contract R82806101
- US Department of Energy National Energy Technology Laboratory Contract DE-FC26-01NT41017
- Related Presentations
 - Poster 12-PD16 Particle Density And Shape Factors Estimated From Merging Aerodynamic And Mobility Size Distributions
 - Poster 12-PA9 Light Scattering by Fine Particles During PAQS: Measurements and Modeling
 - Poster 12-PD13 Ambient Aerosol Size Distributions Measured During PAQS
 - Talk 19-C2 (Friday 10:20) Aerosol Water Content During Pittsburgh Air Quality Study: Observations And Model Comparison