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" e = Reduced organic
compounds used as tracers
for sources of organic
Cholesterol carbon
(0.03 — 1% of cooking OC) i .
= Highly source specific
= Small fraction of emissions

= Are these compounds stable
under conditions of long
Norhopane )
(0.0006% - 0.11% of vehicle oc) ~ fange transport:
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= Compare ambient
levels to emissions

= Conclusion
= Markers appear stable
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Other evidence for photochemical
oxidation of tracers

= PAH
= Significant evidence for oxidation from field and laboratory
= Results illustrate complexity — composition, moisture, etc. effects
= Kamens et al. 1988, Nielsen 1988, Finlayson-Pitts 2000
= Oleic acid
= O, uptake experiments --y ~ 103

= Disconnect between laboratory results and atmospheric
observations

= Complexity of phase and mixture

= Rudich et al. 2002, Morris et al. 2002, Smith et al. 2002
= OH uptake

= v > 0.1 for alkanes, alkanoic acids, PAH, etc.
= Levoglucosan

= No evidence of acid catalyzed hydrolysis

= Fraser et al. 2000
= Cholesterol




i What are chemical time scales?
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Laboratory Data from
Smog Chamber
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Mixing complicates examination of ambient data
for evidence of photochemical aging

Continued mixing and
photochemical aging
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Using a relative rate approach to separate
mixing and aging
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Hopane*1000/EC
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Ambient data consistent with significant
photochemical aging

Tracers for Vehicles Tracers for cooking
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Strong seasonal variation in Hopane/EC ratios.
Photochemical aging of hopanes?
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Upwind measurements of hopanes also
suggest photochemical aging in summer

Much lower levels of hopanes in regional aerosol during summer.

Organic Carbon 17a(H),21b-hopane
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* Seasonal variation in some non-vehicular source of EC.
* Seasonal variation in fleet composition.
* Seasonal variation in hopane/EC ratio of motor vehicle emissions




Seasonal variations in vehicle emissions?
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Laboratory Aging Experiments in a
Smog Chamber
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CMU smog chamber
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4-mix (30% oleic acid, 30% cholesteral)

Ratio with hexacosane

Ozonolysis of oleic acid and cholesterol in
model meat smoke aerosols
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The rate constant for ozone aging of cholesterol and oleic acid
depends on the mixture composition.

Condensed-phase relative rates
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» k(nervonic)/k(propene) = 6.8 + 0.8




Decay of cholesterol may be significant under
conditions of regional transport
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No Reaction

[Cholesterol]/[Cholesterol],

Time (days)

Rate constant from 14 component mixture experiment

i Are molecular markers stable?

= Both field and laboratory data suggest that
molecular markers may not be stable under
conditions of regional transport.

= Dependence of oxidation rates on mixture
composition complicates interpretation of
laboratory experiments
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