Field and laboratory experiments examining the stability of organic molecular markers used for source apportionment

Allen Robinson, Neil Donahue, Amy Sage, Kara Huff Hartz, Emily Weitkamp
Carnegie Mellon University

Presented at AAAR Specialty Conference: Particulate Matter, Supersites Program & Related Studies February 7-11, 2005, Atlanta GA.

Organic Molecular Markers

- Reduced organic compounds used as tracers for sources of organic carbon
 - Highly source specific
 - Small fraction of emissions

- Are these compounds stable under conditions of long range transport?

Cholesterol
(0.03 – 1% of cooking OC)

Norhopane
(0.0006% - 0.11% of vehicle OC)
Evaluation of Stability of Molecular Markers in Los Angeles

- Compare ambient levels to emissions
- Conclusion
 - Markers appear stable in LA
- Some evidence of aging
 - Oleic acid
 - PAH, esp. downwind

Schauer et al. 96; Rogge et al. 96

Other evidence for photochemical oxidation of tracers

- PAH
 - Significant evidence for oxidation from field and laboratory
 - Results illustrate complexity – composition, moisture, etc. effects
- Oleic acid
 - \(\text{O}_3 \) uptake experiments \(\gamma \sim 10^{-3} \)
 - Disconnect between laboratory results and atmospheric observations
 - Complexity of phase and mixture
- OH uptake
 - \(\gamma > 0.1 \) for alkanes, alkanoic acids, PAH, etc.
- Levoglucosan
 - No evidence of acid catalyzed hydrolysis
 - Fraser et al. 2000
- Cholesterol
What are chemical time scales?

\[\tau = \frac{N}{\phi} = \frac{4}{3} r \frac{\rho Na}{M \gamma Cs} \]

Field Data from Pittsburgh Air Quality Study

PAQS Main Site

Laboratory Data from Smog Chamber

Carnegie Mellon University
10 m³ temperature-controlled chamber
Mixing complicates examination of ambient data for evidence of photochemical aging.

Using a relative rate approach to separate mixing and aging.

Assuming compounds emitted by a single source:

\[\log\left(\frac{C_1}{C_3}\right) \]

Increasing photochemical age

\[m = \frac{k_2 - k_3}{k_1 - k_3} \]
Ambient data consistent with significant photochemical aging

Strong seasonal variation in Hopane/EC ratios. Photochemical aging of hopanes?
Upwind measurements of hopanes also suggest photochemical aging in summer.

Much lower levels of hopanes in regional aerosol during summer.

What about mixing?

- Seasonal variation in some non-vehicular source of EC.
- Seasonal variation in fleet composition.
- Seasonal variation in hopane/EC ratio of motor vehicle emissions
Seasonal variations in vehicle emissions?

CASS

- Vehicle OC
 - Non Cat Gas
 - Cat. Gas
 - Diesel

NFRAQS

- Vehicle OC
 - Gas
 - Diesel

Ambient Data
- Summer
- Spring/Fall
- Winter

- Schauer catalytic gas
- Non-catalytic gas

Laboratory Aging Experiments in a Smog Chamber

- CMU smog chamber
- 1500 µg/m³ aerosol
- Non-reactive tracer: pentane
- Reactive: 1-butene, propene

- T=22 ± 2 °C,
- RH= 7 ± 3%

- Model Meat Smoke Aerosol
 - 4 & 14 component mixtures – alkanoic acids, alkenoic acids, sterols, alkanes, ...

- Gas phase tracers
- 2-butanol (radical scavenger)

- Ozone Monitor
- GC-MS
- Quartz Filter Samples
- GC-FID
- SMPS
Ozonolysis of oleic acid and cholesterol in model meat smoke aerosols

4-mix (30% oleic acid, 30% cholesterol)
O3 ~ 350 ppbv

14-mix (17% oleic acid, 4% cholesterol)
O3 ~ 100 ppbv

The rate constant for ozone aging of cholesterol and oleic acid depends on the mixture composition.

Relative rate analysis of 14 component model meat smoke mixture

Condensed-phase relative rates

- palmitic acid
- cholesterol
- pentacosane

Mixed-phase relative rates

- oleic acid
- nervonic acid

- \(\frac{k(\text{cholesterol})}{k(\text{oleic})} = 0.19 \pm 0.08 \)
- \(\frac{k(\text{palmitic})}{k(\text{oleic})} = 0.05 \pm 0.06 \)
- \(\frac{k(\text{pentacosane})}{k(\text{oleic})} = 0.006 \pm 0.009 \)

- \(\frac{k(\text{oleic})}{k(\text{propene})} = 6.4 \pm 0.8 \)
- \(\frac{k(\text{nervonic})}{k(\text{propene})} = 6.8 \pm 0.8 \)
Decay of cholesterol may be significant under conditions of regional transport

Rate constant from 14 component mixture experiment

Are molecular markers stable?

- Both field and laboratory data suggest that molecular markers may not be stable under conditions of regional transport.
- Dependence of oxidation rates on mixture composition complicates interpretation of laboratory experiments
Acknowledgments

- Funding: EPA, DOE, NSF
- Wolfgang Rogge at FIU
- Everyone who worked on Pittsburgh Air Quality Study