Mass Balance Closure and the Federal Reference Method for PM$_{2.5}$ in Pittsburgh

Allen L. Robinson, Sarah L. Rees, Andrey Khlystov, Charles O. Stanier, Spyros N. Pandis
Carnegie Mellon University

Presented at AAAR Specialty Conference: Particulate Matter, Supersites Program & Related Studies February 7-11, 2005, Atlanta GA.
Overview

- Compare FRM PM$_{2.5}$ mass to the sum of aerosol chemical components
- Mass balance discrepancy
 - Positive: FRM $>$ Σ chemical components
 - Negative: FRM $<$ Σ chemical components
- Water
- Volatilization of Organics and Nitrate
PM$_{2.5}$ Concentration (µg/m3)

15.9 µg/m3 (annual average)
OM = OC x 1.8
Mass Balance - February 2002

(b) PM$_{2.5}$ Concentration (µg/m3)

- FRM PM$_{2.5}$
- Nitrate, NH$_4$, EC, & Crustal
- Sulfate
- OM

Date (February 2002)
Daily Mass Balance Discrepancy

- Negative Discrepancy
- Positive Discrepancy
- 95% Confidence Interval

FRM PM2.5 (µg/m³) vs. FRM Mass Sum Components

- Positive Discrepancy
- Negative Discrepancy
Monthly Mass Balance

PM$_{2.5}$ Concentration (µg/m3)

- Missing
- Crustal
- EC
- Ammonium
- Nitrate
- Sulfate
- OM

Jul Aug Sept Oct Nov Dec Jan Feb Mar
Hypotheses to Explain Mass Discrepancy

- **Water**: Positive mass discrepancy (FRM > components)
- **Volatileization**: Negative mass discrepancy (FRM < sum of components)
 - Organic volatilization
 - Nitrate volatilization
Measurements of aerosol water content

Dry inlet

Particle Sizers
Nano-SMPS
SMPS
APS

Wet inlet

DAASS: Dry/Ambient Aerosol Size Spectrometer 12PD-14

Estimating Aerosol Water at 35% RH

\[
M_{H2O} = \left(V_{wet} - \frac{M_{dry}}{\rho_{dry}} \right) \rho_{H2O}
\]

\[
\frac{1}{RH} = 1 + B \frac{M_{dry}}{M_{water}}
\]

Where \(V_{wet} \) is PM\(_{2.5} \) volume, \(M_{dry} \) is dry mass – sum of components, \(\rho_{dry} \) is dry density, and \(B \) is f(RH, composition).
Hourly Mass Balance

![Graph showing PM2.5 (ug/m³) over time from 7/20/01 to 7/25/01. The graph includes various compounds such as Crustals, OC, EC, NH₄, SO₄, NO₃, and TEOM.](image)
Water content seems impacted by acidity; the more acidic the atmosphere, the greater the aerosol water.

Corresponds to presence of NH$_4$HSO$_4$, a species with hygroscopic properties.
Volatilization of Organics

\[y = 0.809x - 0.3443 \]

\[R^2 = 0.96 \]

19% volatilization
OC mass loss from Teflon filter
Mass loss from volatilization of Nitrates
Good mass balance was achieved for the winter months.
Mass Balance Closure Winter 2002

- PM$_{2.5}$ Concentration (µg/m3)
 - Measured Mass
 - Adjusted Mass

- FRM PM$_{2.5}$ 11.6 µg/m3

- Components:
 - Water
 - Nitrate
 - OM
 - EC
 - Crustal
 - Ammonium
 - Sulfate
Conclusions

- Accounting for water and volatilization we can account for FRM mass in Pittsburgh
 - Water retention significant on acidic high PM days
 - Volatilization losses in winter corresponding to higher nitrate

Acknowledgements

- This research was conducted as part of the Pittsburgh Air Quality Study, which was supported by US Environmental Protection Agency under contract R82806101 and the US Department of Energy National Energy Technology Laboratory under contract DE-FC26-01NT41017. This talk has not been subject to EPA's peer and policy review, and therefore does not necessarily reflect the views of the Agency. No official endorsement should be inferred.

- The many, many undergraduate students, graduate students, post-docs and collaborators who made PAQS possible