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PROGRAM FOCUS
TASK I:  Mechanism-Based Evaluation Procedures

(Chromia-Forming Alloys)

• Characterization of Exposed Fuel Cell Interfaces
• Growth Rates of Chromia Scales on Cr and Ferritic 

Alloys
• Adhesion of Chromia Scales
• Oxide Evaporation
• Complex Atmosphere Testing 

Note: An important theme which cuts across Tasks I and II 
is the establishment of accelerated testing protocols.



PROGRAM FOCUS;
TASK II: FUNDAMENTAL ASPECTS OF 

THERMOMECHANICAL BEHAVIOR
• XRD Stress Measurements (Chromia Films)
• Indentation Testing of Interface Adhesion
• Indentation Test Fracture Mechanics Analysis

Key Issues:  What leads to spallation:  scale thickening, stress changes or 
changes at the interface?
Can we quickly evaluate alloy systems without testing to the time for 
spontaneous spallation?
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PROGRAM FOCUS
TASK III:  Alternative Material Choices

This Task involves theoretical analysis of possible 
alternative metallic interconnect schemes including:

• Control of Growth Rate and Conductivity of Simple 
Oxides (e. g. CoO, NiO)

• Ni and dispersion-strengthened Ni
• Low CTE Alloys Based on Fe-Ni (Invar)
• Bi-layer Alloys

The most promising systems will be evaluated 
experimentally with regard to durability and oxide 
conductivity



TASK I: RESULTS
Oxidation of Ferritic Alloys

Alloys
• E-BRITE (26 Cr-1 Mo)
• AL 453 (22 Cr + Ce/La)
• Crofer (22 Cr + La)
• ZMG232 (22 Cr + La/Zr)

Exposure Conditions
• T = 700°C, 900°C
• One-Hour Cycles
• Atmospheres

- Dry Air (SCG)
- Air + 0.1 atm H2O
- Ar/H2/H2O (SAG)

(pO2 = 10 –20 atm at 
700°C and 10 –17 

atm at 900°C)



TASK I: RESULTS
Diagram of Apparatus



Previous Results

• Oxidation in wet air produced the most severe 
degradation at 900˚C (accelerated chromia growth on 
Crofer and AL453 and increased spallation from E-brite).

• ASR correlated with oxide thickness.
• Thin specimens deform under oxidation-induced 

stresses.



TASK I: RESULTS
Dry Air Exposures – 700oC

Time vs. Mass Change / Area (700oC, dry air)
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TASK I:  RESULTS
Simulated Anode Gas (Ar-4%H2, H2O) Exposures – 700oC

Time vs. Mass Change / Area for Crofer, E-brite, AL453, & Ni (700oC, Ar/H2/H20)
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TASK I: RESULTS
Wet Air (0.1 atm H2O) Exposures - 700oC

Time vs. Mass Change / Area (700oC, wet air)
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TASK I: RESULTS
Microstructural and Phase Identification

Crofer 700oC
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TASK I: RESULTS
Microstructural and Phase Identification

AL453 700oC

Dry Air
2000 cycles
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TASK I: RESULTS
Microstructural and Phase Identification

ZMG232 700oC

Dry Air
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TASK I: RESULTS
Microstructural and Phase Identification

E-brite 900oC
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TASK I: RESULTS
Microstructural and Phase Identification

E-brite 700oC

Dry Air
2000 cycles

Wet Air
1017 cycles

SAG
2000 cycles
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TASK I: RESULTS
Sigma Phase in E-brite at 700oC

Dry Air
2000 cycles

SAG
2000 cycles

Wet Air
1017 cycles

Wet Air
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Cracks
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Chromia Evaporation
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Pressure of CrO3
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Crofer oxidized in contact with LaSrMnO4
(cathode) for 88hrs at 900oC in air + 0.1atm 

H2O

Crofer (side in 
contact with cathode)

Crofer (side opposite 
cathode)

MnCr2O4
with ~1.5% 
Sr and ~2.6% 
La

MnCr2O4

Cr2O3

Cr2O3 with ~2% 
Sr,  ~4% La, and 
~4.7% Mn

~74.9% Fe 
~20% Cr 
~2.2% La 
~2% Mn 
~0.9% Sr

After exposure, the cathode 
contained ~0.9% Cr and ~1.8% Al



La0.8Sr0.2CrO3 Coated E-Brite (~5µm thick)

La0.8Sr0.2CrO3*
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*Coating is porous due to a phase 
transformation during devitrification
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La0.8Sr0.2FeO3 Coated E-Brite (~5µm thick)
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La0.8Sr0.2FeO3 Coated E-Brite (~5µm thick)

La0.8Sr0.2CrO3 Coated Al 29-4C (~5µm thick)

Chromite coating cracked as well 
after same exposure conditions

La0.8Sr0.2FeO3

La0.8Sr0.2FeO3

Substrate Substrate Cr2O3/SiO2

Cross sections show the coating to be 
much more dense, but also confirms 
the cracks seen from the surface



Task I Summary

• Oxidation morphologies were similar at 700 and 900ºC.
• MnCr2O4 is more stable than other transition metal 

chromates.
• Measurable interaction between Crofer and cathode 

material.
• Sigma-phase was observed to form in the higher Cr 

content alloys at 700˚C.
• Chromia growth reduced under chromite coating.
• Chromite and ferrite coatings cracked during 

devitrification.



TASK I:  FUTURE WORK
Work Planned for Next Twelve Months

• Continue Conductivity Measurements on Scales
• Continue Study of Effect of Contact with Anode 

and Cathode Materials
• Experiments to Decrease Chromia Growth Rate 

(Reactive Elements, Elimination of Grain 
Boundaries in Chromia)

• Study the kinetics of sigma-phase formation.
• Investigate Effects of Simultaneous Exposure to 

Cathode and Anode Gases
• Continue Study of Effects of Coatings (Chromite) 

on Chromia Growth and Evaporation



TASK II SUMMARY
• Indentation Has Been Used to Induce Spallation in Vapor- and 

SAG-Exposed E-BRITE and in Coated Specimens
• Initial Observations and Fracture Calculations are Consistent 

with Observations
• Ability to Predict Spallation Behavior at Early Times is Key as 

Testing Temperatures are Reduced

• Extend Modeling of Indentation of E-BRITE to Other Substrate 
Systems

• Incorporate Oxide Thickness and XRD Stress Measurements 
into Models:  Identify Mechanisms Leading to Spallation

• Indentation Tests on E-BRITE for Longer Exposures at 900° C 
in Wet Air and Simulated Anode Gas

• Indentation Tests on Specimens Exposed at 700° C 
• Study of Adherence of Exposed Coated Specimens

TASK II:  FUTURE WORK
Work Planned for Next Twelve Months



TASK III: RESULTS
Comparison of oxide thickness for NiO and Cr2O3 -700˚C

Ni           
Wet Air
1017 cycles
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Estimated ASR is approximately the same for Ni and Crofer after oxidation



Task III: TYPICAL RESULTS
Co-8 wt% Cu - 900ºC Dry Air - 28 hours

Pt markers observed above scale/alloy 
interface

Platinum markers

CoO



Alloy

Scale

Copper Concentrations 125 hr 
exposure

Copper to Cobalt
ratio Position

12.51 ±1.06 5 µm from gas/scale interface
7.01 ±0.95 midway through scale
2.55 ±1.05 5 µm above scale/alloy interface

Copper Concentration Position
6.38% ±0.83% 5 µm below scale/alloy interface
8.40% ±1.17% midway through alloy

Note significant “uphill diffusion” of Cu in CoO.



Parabolic Rate Constants at 900ºC
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Summary: Cu was successfully doped into CoO but growth rate 
was not decreased.



TASK III: PRELIMINARY RESULTS
Alternative Material Choices

•This Task involves a theoretical evaluation of 
alternate metallic materials  which have properties 
superior to the ferritic alloys.

•CoO scales have been successfully doped with 
Cu from an alloy but growth rate was not 
decreased

TASK II:  FUTURE WORK
Work Planned for Next Twelve Months

•Work on doping of CoO and NiO by alloying will 
continue focussing on growth rate and 
conductivity.

•The most promising materials will be fabricated 
and tested.



SUMMARY AND CONCLUSIONS

The aim of this project is to evaluate the chemical 
and thermomechanical stability of ferritic alloys in 
the fuel cell environment.

The understanding gained will be used to attempt 
to optimize the properties of the ferritic alloys.

A parallel study is evaluating the potential use of 
alternate metallic materials as interconnects.
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with other branches of the National Laboratories and 
Industry.



TASK I: RESULTS
Wet Air (0.1 atm H2O) Exposures (for Ni) - 700oC

Time vs. Mass Change / Area for Ni (700oC, wet air)
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Side 1 Side 2

TASK I: RESULTS
Dual Atmosphere Conditions

800oC, 3 cycles, 100 hours per cycle

Internal Al2O3
Internal Al2O3

Si rich oxide
Si rich oxide

Cr2O3 MnCr2O4 MnCr2O4Cr2O3



Crofer Stress Measurement Using the 220 Lattice Plane (900oC, Dry Air, 100 Cycles)
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Stress = -2.19 ± 0.03 GPa 

TYPICAL RESULTS
TASK II: THERMOMECHANICAL BEHAVIOR

Stress Measurements with 220 Lattice Plane – 900oC, Dry Air 



TASK II: THERMOMECHANICAL BEHAVIOR
USE OF TINTING TO VIEW SAG SPECIMEN DEBONDS

• Two Indents after 464 Hours at 900°C
• 60kg Indent, 10min at 700°C (tint), 150kg Indent (Mechanics Analysis 

Shows Increased Load Only Increases the Size Scale of the Damage) 
• Tinting allows Clear Visualization of Debond Size at 60kg
• Visual Extent of Debonding Roughly Equals Actual Extent of Debonding

SAG 264 Hrs
SAG 464 Hrs/150KgSAG 464 Hrs/150Kg

60 Kg Indent

60 Kg Debond

150 Kg Indent

60 Kg Debond
(Tint)

150 Kg Debond



TASK II: THERMOMECHANICAL BEHAVIOR
SAG SPECIMEN INDENT FRACTURE MODELING
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• Finite Element Model of the Indent Problem:  Substrate Strains 
Transferred to the Chromia Scale

• Fracture Mechanics Formulas Estimate Gc vs. Normalized Debond 
Radius (Residual Stress of -2.22 GPa in Chromia Scale)

• R/a = 2.5 and toxide = 2µm Yields: Gc = 34 J/m2


