Resolving the Interactions hetween the Balance of Plant,
SOFC, Power-Conditioning, and Application Loads

Project Investigators

* Sudip K. Mazumder, Kaustuva Acharya, and Sanjaya Pradhan
(University of I1linois)
 Michael von Spakovsky, Diego Rancruel, and Doug Nelson

(Virginia Tech)

« Comas Haynes and Robert Williams
(Georgia Tech.)

« Joseph Hartvigsen and S. Elangovan
(Ceramatec Inc.)

* Chuck Mckintyre and Dan Herbison
(Synopsys Inc.)

SECA Core Technology Program Review Meeting

May 12, 2004
Boston, Massachusetts



University of Illinois at Chicago

PES Modeling &
System Integration and Analysis



Phase-1 Comprehensive SOFC-PS Modeling

[=HC,_ISIGHT_prajectsigl) \PROMS.exe
» nodif u.l.l .'|.|'| any iy

. lelﬁé

= Neprzion

1]
by UK
and utilization
licence agreenent

ithout the prior uritte]®
;. Enteppe Limited.

ore informatio
Fprise oo d oduct

ftware

: NT 5.8 I'lll-| 21 2Pa1

na logy a

| eorn

Project Edil Wiew Entity Activities Windows Help

E=E)

C i

PROCESS S5_Design [SnulationSOFC _Stack1]

UNIT
EIN_S5 AS StackSubSysten

Ij Palammr I:s maEtions

E3 Expx
I Sav
&= [ Misg

WITHIN HeacExchangees DO

- A 1 I OU

1182
B nax 1197

Preheaterl.PlateThickness

FreheaterII. PlaceThicknes

FreheatecIIT. FlaceThickne

PreheaterIV. PlaceThicknes

PreheaterV.PlaceThickness
END

EEE ST TR

WITHIN Ecaler DO
Economizer.NoFasses
Economizer. TubeThickneas
Evaporator.Mofazaes

I
i
W E W

=10] |
H Tools Wirdow Help =@ x
i

- ]

il WS S LAY L

ITARGET=in{l Target current{i) j
PHOT=3 |{atm) -
HOS=5

FUELOTIL=0.85 fuml utilization

=] 0050

i | Headnu Fi
{=5) Hesachs%S

ZLNTLP i 3-@3 BSE-SL-
ll.E.a-]':'

-Lemporal

=1t r—‘l

odet- -

Lr 90 Col EL | [




/

—_——— -—--- - - - - - - - - - — —_ — —_ ————_——————————————————————— — =

Modeling Approach for Phase-II

Phase-I Comprehensive
SOFC PS Model

§

Advantages of SIMULINK

Phase-II Modeling Approach
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 (Cost effective

« Easily accessible to
members of SECA
industrial group

e (Can seamlessly
integrate with
FORTRAN and
gPROMS; hence
existing SOFC and
BOPS models can
be used for offline
simulation



Load Transient Mitigation
Energy-Storage Devices
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Energy storage devices to mitigate the effects of load-transients on SOFC
— Batteries
— Pressurized-hydrogen storage tanks




SOFC Response to Load Transients
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¢ Increase in load results in the increases of the current density, which increases the
polarization drop in cell, and hence a drop in the cell voltage.

/

¢ Increase in the temperature due to higher thermal energy release resulting from more

electro-chemical reactions, 1.e. At

Ty = p-Cv-(AV)thtal + 1




SOFC Response to Load Transient

Current Density and Fuel Utilization
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¢ A sudden increase in the current density just after the load transient

¢ Higher current density increases the fuel ut
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SOFC Response to Load Transient

Spatial Temperature Distribution

After Load Transient

Before Load Transient

¢ Cathode may be subjected to significant stresses (thermal expansion mismatch)

Increase in the cleavage strength (comparable to the grain boundary strength)

May result in the appearance of inter-granular fracture
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t Mitigation

Load-Transien
Effects of Energy-Buffering Devices

After Load Transient

Before Load Transient
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Battery provides the required load current during the transient
¢ Minimal increase in the current density and in turn minimal increase in the fuel utilization
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Load-Transient Mit
Effect of Advanced Inverter Modulation Techniques
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Georgia Tech/Ceramatec

SOFC
Modeling and Analysis



SOFC Transient Response Time Scales

« Electrochemical (usec )
— QGas phase phenomena
— Diffusion/surface absorption relaxation

* Hydraulic (msec) - Time Scale in Simulink Model
— Reactant depletion/accumulation effects within electrode
— QGas flow transit time

e Thermal (ksec)

— Too slow to notice power electronics transients
« Startup
* Load change

« Aging (years)
— Lifetime degradation

» Solid state cation interdiffusion/reaction
* Microstructural coarsening



Operational Reactant Feed/ Load Variation

Fuel Stream t — t+ At

— v,
Fuel i i nelement(t_l_At) —
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Oxidant
Stream t > t+ At

Vs

Variable Varied

Current Supply
Power Fuel Cell Reactant
Conditioner Stack Supply

» Variable cell discretization based upon changing reactants
flow rates to maintain msec synchronization

" Serial “packets” of time wherein quasi-steady flow
supplies are predicated



Cell Potential [V]

Preliminary Results

SOFC Voltage Transition
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> Plausible transient transition path shown from validated steady

state end points

» Greater attention will be added to the electrode mass transfer transients for higher
fidelity modeling (e.g., capturing “undershoot” associated with increases in load

current)

»Matlab/Simulink and FORTRAN developmental environments simultaneously are
being accommodated



Resolving Co-flow SOFC Model

Spatial Effects




Temporal Effects Resolving
Homogenized Spatial Model

Air ........................
Eqn. B
Equation A. Heat equation in solid
/s ﬁt /e J q"(x)
TW.(x)—=—|kV,.(x +
Equation B. Energy transport in gas streams
*Neglecting axial conduction and viscous dissipation
nsp _
PC, % = Fll.i +qg(x) H =3.5RT, For an ideal diatomic gas
4 i=1 i
DT Jor a
=—+yv—, Foral-Dscalar dg (x)=h P(T.(x)—T.(x))dx
= () =hP(T,(x) = T,(x)




Thermal-Electrochemical Coupling

 Electrochemical

— Temperature dependence
* Cell ASR, &k, E,,,

e Thermal

— Heat generation/absorption

IR in current paths
 Electrochemical heat of reaction (7°AS)

* Fuel reactions endotherm/exotherm



Transient Heating: Augment SECA Efforts with
Electrochemical “Light-off” Considerations

Electrochemical light-off is the
“kinetic acceleration” occurring
during transitional heat-up

May have significant impact upon
cell reliability as a part of thermal
cycles and ramp rate

Electrochemical operating
conditions (e.g., load current
demand, NOS) provide a unique
set of “controls” for this dynamic
phenomenon

Studies to characterize and
optimize this intermediate thermal
management stage
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Virginia Polytechnic Institute and State
University

Balance of Plant Sub-system (BOPS)
Modeling and Analysis



SOFG PS: Balance of Plant Sub-system [BOPS) Phase Il Summary
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DETAILED MODEL STEAM METHANE REFORMER
START-UP RESULTS

High Pre-Heating

Steam methane reformer start-up

> Slowest thermal response component of
the BOPS

> Faster response. Steady state is reached
in 700 sec

Conversion of CH4

Low Pre-Heating

Steam methane reformer start-
up for low pre-heating

> Slower response. Steady state is
reached in 1100 sec

Conversion of CH4

» The chemical response is dependent
on the temperature




DETAILED MODEL HEAT EXCHANGER START-UP
RESULTS

Heat Exchanger Start-Up

1200

[

Comparison between high and
no pre-heating

> Pre-heating significantly reduces the

— Cold side exit (Pre-heating) time to reach operational temperature
— Hot side exit (Pre-heating)
— Cold side exit (No-Pre-heating)

Hot Cold side exit (No-Pre-heating)
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DETAILED MODEL STEAM GENERATOR START-UP
RESULTS

Steam Temperature (Start-Up with No Recirculation)
e Steam generator start-up

» Operational (steady state)
temperature (800 °K) is reached
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» Operational (steady state)
temperature (800 °K) is reached

immediately after stopping
recirculation




BOPS CONTROL

* Non-Linear State Space Theory:

Ly
J=C(X2)+ [ f(% %,i,t)dt +g(t, 3(t,)

Iy

H_J - ~~ A N —— g — ~— -/
Objective Capital Cost Operational and Control Cost Terminal Cost
— _ — -/
I Y
Lagrange Form Meyer Form
— "
Bolza Form

* Capital and operational costs usually optimized independently of the control and
terminal costs. Using ILGO, this optimization problem will be solved as a whole.

* Will develop a PID control model in order to control, e.g., hydrogen production, fuel
tank level, and hydrogen flow to the fuel cell stack during start-up and load changes.

* During the optimization phase, both advanced PID and optimal control theory will be
used since they are well suited for highly complex, non-linear systems with multiple
components. The utility of state space control approaches is limited due to the non-
linearities imnvolved.

* Already implemented are controllers for the H, flow rate and temperature at the exit of
the reformer.




CONTROL VARIABLE CASE B
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SYSTEM CONTROL
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Future Work

Real-Time Simulation

e Reduction of individual complexity of modules
— PES model (discontinuous and hybrid nonlinear dynamics)
— BOPS model (large response times; high order, nonlinear, dynamic)
— SOFC model (algebraic loops and root convergence)

« Specific executables for PES, BOPS and SOFC for fast
interaction

e Execution in MATLAB/ Simulink environment
« Significant decrease in simulation time for the integrated
system

— Enabling the study of SOFC durability and reliability

— Design of optimized control scheme for the system as a unit for
optimized performance, reliability and durability.



Future Work
Planar Solid Oxide Fuel Cell (Planar SOFC)

Planar SOFC stack model (electrical, thermal and
electrochemical) development, enhancement and model
validation

— Georgia Tech & Cerametec

Implementation and validation of a comprehensive balance of
plant system model (thermodynamic, kinetic, and geometric) and
optimal control strategies (bottoms-up approach)

— Virginia Tech & Cerametec

Development of PES nonlinear topologies (stationary and non-
stationary application loads)
— U of I at Chicago

System 1ntegration and interaction analyses
— U of I at Chicago



Future Work

Development of New Control Strategies

» Optimal control strategies using a bottoms-up approach to
improve BOPS response to load transients

» Optimal balance between overall system efficiency, cost,
and SOFC stack durability at each load point

» Could lead to the control of each subsystem in such a way
that the system responds optimally to any given load

» Greater fidelity as a result of the rigorous simulation of the
subsystems and a sufficient consideration of system
dynamics



