Resolving the Interactions between the Balance of Plant, SOFC, Power-Conditioning, and Application Loads

Project Investigators

- Sudip K. Mazumder, Kaustuva Acharya, and Sanjaya Pradhan (University of Illinois)
 - Michael von Spakovsky, Diego Rancruel, and Doug Nelson (Virginia Tech)
 - Comas Haynes and Robert Williams (Georgia Tech.)
 - Joseph Hartvigsen and S. Elangovan (Ceramatec Inc.)
 - Chuck Mckintyre and Dan Herbison (Synopsys Inc.)

SECA Core Technology Program Review Meeting

May 12, 2004 Boston, Massachusetts

University of Illinois at Chicago

PES Modeling & System Integration and Analysis

Phase-I Comprehensive SOFC-PS Modeling

Modeling Approach for Phase-II

Advantages of SIMULINK

- Cost effective
- Easily accessible to members of SECA industrial group
 - Can seamlessly integrate with FORTRAN and gPROMS; hence existing SOFC and BOPS models can be used for offline simulation

Load Transient Mitigation

Energy-Storage Devices

- Energy storage devices to mitigate the effects of load-transients on SOFC
 - Batteries
 - Pressurized-hydrogen storage tanks

SOFC Response to Load Transients

- ❖ Increase in load results in the increases of the current density, which increases the polarization drop in cell, and hence a drop in the cell voltage.
- Increase in the temperature due to higher thermal energy release resulting from more electro-chemical reactions, i.e. $T_{n+1} = \frac{\Delta t}{\rho \cdot C \cdot V \cdot (\Delta V)} q_{total} + T_n$

SOFC Response to Load Transient Current Density and Fuel Utilization

- ❖ A sudden increase in the current density just after the load transient
- ❖ Higher current density increases the fuel utilization drastically just after the load transient

SOFC Response to Load Transient Spatial Temperature Distribution

• Issues

- Cathode may be subjected to significant stresses (thermal expansion mismatch)
- Increase in the cleavage strength (comparable to the grain boundary strength)
- ❖ May result in the appearance of inter-granular fracture

Load-Transient Mitigation Effects of Energy-Buffering Devices

- ❖ Battery provides the required load current during the transient
- ❖ Minimal increase in the current density and in turn minimal increase in the fuel utilization

Load-Transient Mitigation

Effect of Advanced Inverter Modulation Techniques

- Space-vector modulation used for the inverter
- Slow boost converter response to prevent immediate change in SOFC energy demands

Georgia Tech/Ceramatec

SOFC Modeling and Analysis

SOFC Transient Response Time Scales

- Electrochemical (µsec)
 - Gas phase phenomena
 - Diffusion/surface absorption relaxation
- Hydraulic (msec) Time Scale in Simulink Model
 - Reactant depletion/accumulation effects within electrode
 - Gas flow transit time
- Thermal (ksec)
 - Too slow to notice power electronics transients
 - Startup
 - Load change
- Aging (years)
 - Lifetime degradation
 - Solid state cation interdiffusion/reaction
 - Microstructural coarsening

Operational Reactant Feed/ Load Variation

- Variable cell discretization based upon changing reactants flow rates to maintain msec synchronization
- Serial "packets" of time wherein quasi-steady flow supplies are predicated

Preliminary Results

- > Plausible transient transition path shown from validated steady state end points
- ➤ Greater attention will be added to the electrode mass transfer transients for higher fidelity modeling (e.g., capturing "undershoot" associated with increases in load current)
- ➤ Matlab/Simulink and FORTRAN developmental environments simultaneously are being accommodated

Spatial Effects Resolving Co-flow SOFC Model

Temporal Effects Resolving Homogenized Spatial Model

Equation A. Heat equation in solid

$$\rho C_p(T)V_f(x)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left\lfloor kV_f(x)\frac{\partial T}{\partial x} \right\rfloor + \frac{q'''(x)}{A_c}$$

Equation B. Energy transport in gas streams

•Neglecting axial conduction and viscous dissipation

$$\rho C_p \frac{DT}{Dt} = \sum_{i=1}^{nsp} \overline{H}_i \frac{r_i}{m_i} + q(x)$$

$$\overline{H} = 3.5RT, \text{ For an ideal diatomic gas}$$

$$\frac{DT}{Dt} = \frac{\partial T}{\partial t} + v \frac{\partial T}{\partial x}, \text{ For a 1-D scalar } dq_g(x) = h_c P(T_s(x) - T_g(x)) dx$$

Thermal-Electrochemical Coupling

- Electrochemical
 - Temperature dependence
 - Cell ASR, k_e , E_{rev}
- Thermal
 - Heat generation/absorption
 - I²R in current paths
 - Electrochemical heat of reaction $(T\Delta S)$
 - Fuel reactions endotherm/exotherm

Transient Heating: Augment SECA Efforts with Electrochemical "Light-off" Considerations

- Electrochemical light-off is the "kinetic acceleration" occurring during transitional heat-up
- May have significant impact upon cell reliability as a part of thermal cycles and ramp rate
- Electrochemical operating conditions (e.g., load current demand, NOS) provide a unique set of "controls" for this dynamic phenomenon
- Studies to characterize and optimize this intermediate thermal management stage

Graphic courtesy of PNNL

Virginia Polytechnic Institute and State University

Balance of Plant Sub-system (BOPS) Modeling and Analysis

SOFC PS: Balance of Plant Sub-system (BOPS) Phase II Summary

PHASE II: SYSTEM CONTROL STRATEGIES

TASKS TO BE PERFORMED

- Analysis of which set of initial "best practice" control strategies to implement for startup and shut-down
- ➤ Modeling and simulation of system-level start-up and shut-down
- Application of large-scale optimization using decomposition to the synthesis/design and operation of the SOFC PS
- Determination of optimal control strategies for normal operation and start-up/shut-down based on their effects on system reliability, performance, and response

DETAILED MODEL STEAM METHANE REFORMER START-UP RESULTS

Steam methane reformer startup for low pre-heating

- ➤ Slower response. Steady state is reached in 1100 sec
- ➤ The chemical response is dependent on the temperature

Steam methane reformer start-up

- ➤ Slowest thermal response component of the BOPS
- ➤ Faster response. Steady state is reached in 700 sec

DETAILED MODEL HEAT EXCHANGER START-UP RESULTS

Comparison between high and no pre-heating

➤ Pre-heating significantly reduces the time to reach operational temperature

Heat Exchanger Start-Up

Comparison between high and low pre-heating

- ➤ The Higher the pre-heating, the sooner operational temperatures are reached
- ➤ Material temperature gradient constraints are important and should be taken into account

DETAILED MODEL STEAM GENERATOR START-UP RESULTS

Steam Temperature (Start-Up with No Recirculation)

Steam generator start-up

➤ Operational (steady state) temperature (800 °K) is reached within 600 seconds

Steam Temperature (Start-Up with Recirculation)

Steam generator start-up

Operational (steady state) temperature (800 °K) is reached immediately after stopping recirculation

BOPS CONTROL

• Non-Linear State Space Theory:

- Capital and operational costs usually optimized independently of the control and terminal costs. Using ILGO, this optimization problem will be solved as a whole.
- Will develop a PID control model in order to control, e.g., hydrogen production, fuel tank level, and hydrogen flow to the fuel cell stack during start-up and load changes.
- During the optimization phase, both advanced PID and optimal control theory will be used since they are well suited for highly complex, non-linear systems with multiple components. The utility of state space control approaches is limited due to the nonlinearities involved.
- Already implemented are controllers for the H₂ flow rate and temperature at the exit of the reformer.

CONTROL VARIABLE CASE B

SYSTEM CONTROL

$$u(t)$$
 = Control Variable: \dot{m}_{CH_4in}

$$x(t)$$
 = State Variable: Power or $\dot{m}_{H_{2out}}$

Future Work Real-Time Simulation

- Reduction of individual complexity of modules
 - PES model (discontinuous and hybrid nonlinear dynamics)
 - BOPS model (large response times; high order, nonlinear, dynamic)
 - SOFC model (algebraic loops and root convergence)
- Specific executables for PES, BOPS and SOFC for fast interaction
- Execution in MATLAB/ Simulink environment
- Significant decrease in simulation time for the integrated system
 - Enabling the study of SOFC durability and reliability
 - Design of optimized control scheme for the system as a unit for optimized performance, reliability and durability.

Future Work

Planar Solid Oxide Fuel Cell (Planar SOFC)

- Planar SOFC stack model (electrical, thermal and electrochemical) development, enhancement and model validation
 - Georgia Tech & Cerametec
- Implementation and validation of a comprehensive balance of plant system model (thermodynamic, kinetic, and geometric) and optimal control strategies (*bottoms-up approach*)
 - Virginia Tech & Cerametec
- Development of PES nonlinear topologies (stationary and nonstationary application loads)
 - U of I at Chicago
- System integration and interaction analyses
 - U of I at Chicago

Future Work Development of New Control Strategies

- ➤ Optimal control strategies using a *bottoms-up approach* to improve BOPS response to load transients
- ➤ Optimal balance between overall system efficiency, cost, and SOFC stack durability at each load point
- ➤ Could lead to the control of each subsystem in such a way that the system responds optimally to any given load
- ➤ Greater fidelity as a result of the rigorous simulation of the subsystems and a sufficient consideration of system dynamics