Overview of the Hydrogen, Fuel Cells and Infrastructure Program and Heavy Duty Truck APUs

Presented at the SECA Program Review
Boston, MA

May 11, 2004
John A. Garbak
Technology Development Manager
Hydrogen, Fuels Cells & Infrastructure Technologies Program
Why Hydrogen?

Energy Diversity/Security

Transportation

Stationary Power

High Efficiency & Reliability

Low Emissions

Biomass

Hydro

Solar

Wind

Geothermal

Nuclear

Sequestration

Oil

Coal

Natural Gas
DOE Milestones

President’s Hydrogen Fuel Initiative

May’03

International Partnership for the Hydrogen Economy

Basic Research Needs for the Hydrogen Economy

International Partnership for the Hydrogen Economy

Hydrogen Posture Plan

An Integrated Research, Development, and Demonstration Plan

February 2004

Jan’02 Nov’02 Jan’03 Feb’03 May’03 Nov’03 Feb’04
Hydrogen Posture Plan

- Integrates the hydrogen activities supporting the President’s Hydrogen Fuel Initiative across the renewable energy, fossil energy, science, and nuclear energy offices.

- Lays the foundation for a coordinated response to the President’s commitment for accelerated research on critical path hydrogen and fuel cell technologies.

- Establishes high-level performance based milestones to track progress.

http://www.eere.energy.gov/hydrogenandfuelcells/
Timeline for Hydrogen Economy

1. Technology Development Phase
 - H₂ power and transport systems available in select locations; limited infrastructure

2. Initial Market Penetration Phase
 - H₂ power and transport systems begin commercialization; infrastructure investment begins with governmental policies

3. Infrastructure Investment Phase
 - H₂ power and transport systems commercially available; infrastructure business case realized

4. Fully Developed Market and Infrastructure Phase
 - H₂ power and transport systems commercially available in all regions; national infrastructure

Bridge Technologies: Hybrid Vehicles
Near-term strategy: Bridge Technologies

Hybrids
Hybrid electric vehicles combine greatly reduced emissions and fuel consumption, with extended range and convenient refueling.

Engines & Emission Control
Commercially viable engine and emission-control technologies for light-duty passenger vehicles and heavy-duty commercial vehicles lead to a reduction in transportation energy use and in petroleum use.

Lightweight materials
Weight reduction is one of the most practical ways to increase the fuel economy of vehicles while reducing exhaust emissions.
An Integrated Vision

- FreedomCAR Partnership $0.5 B
- Hydrogen Fuel Initiative $1.2 B

Aiming for an Industry Commercialization Decision by 2015

Hybrid vehicles are a bridge technology that can reduce pollution and our dependence on fossil fuel until long-term technologies like hydrogen fuel cells are market-ready.

Hybrid/Hydrogen FCV Strategy

- In 2040, the use of FCV’s would generate a savings of 11 mbpd in oil consumption in the light-duty transportation sector.
- In 2040, U.S. carbon reduction is 19%, equivalent to 500 million metric tons per year
DOE FY05 Hydrogen Technology Budget Request

$227 Million
Hydrogen, Fuel Cells, and Infrastructure Technologies

Program Focus: Research, develop, and validate fuel cell and hydrogen production, delivery, and storage technologies for transportation and stationary applications.

Budget

<table>
<thead>
<tr>
<th>Activity</th>
<th>FY03 Appropriation</th>
<th>FY04 Appropriation</th>
<th>FY05 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production and Delivery R&D</td>
<td>11,215</td>
<td>22,564</td>
<td>25,325</td>
</tr>
<tr>
<td>Storage</td>
<td>10,790</td>
<td>29,432</td>
<td>30,000</td>
</tr>
<tr>
<td>Infrastructure Validation</td>
<td>9,680</td>
<td>18,379</td>
<td>15,000</td>
</tr>
<tr>
<td>Safety, Codes & Standards, and Utilization</td>
<td>4,531</td>
<td>5,904</td>
<td>18,000</td>
</tr>
<tr>
<td>Education and Cross-Cutting Analysis</td>
<td>1,897</td>
<td>5,712</td>
<td>7,000</td>
</tr>
<tr>
<td>Fuel Cell Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation Systems</td>
<td>6,160</td>
<td>7,506</td>
<td>7,600</td>
</tr>
<tr>
<td>Distributed Energy Systems</td>
<td>7,268</td>
<td>7,408</td>
<td>7,500</td>
</tr>
<tr>
<td>Stack Component R&D</td>
<td>14,803</td>
<td>25,186</td>
<td>30,000</td>
</tr>
<tr>
<td>Fuel Processor R&D</td>
<td>23,489</td>
<td>14,815</td>
<td>13,858</td>
</tr>
<tr>
<td>Technology Validation</td>
<td>1,788</td>
<td>9,877</td>
<td>18,000</td>
</tr>
<tr>
<td>Technical/Program Management Support</td>
<td>398</td>
<td>395</td>
<td>542</td>
</tr>
<tr>
<td>Total</td>
<td>92,019</td>
<td>147,178</td>
<td>172,825</td>
</tr>
</tbody>
</table>

Key Activities

- Initiate three “Centers of Excellence” for hydrogen storage meeting 2010 targets of 2.0 kWh/kg and 1.5 kWh/L.
- Complete testing of 10,000 psi tanks achieving 2005 targets of 1.5 kWh/kg and 1.2 kWh/L.
- Initiate comprehensive safety research for codes and standards development.
- Complete research on distributed NG production technologies leading to $3.00/gge at the station.
- Initiate new industry projects that will use wind and biomass to produce hydrogen for $4.60/gge by 2009.
- Reduce cost of a 50kW fuel cell power system to $125/kW (assume high volume production.)
- Validate current technology through vehicle/infrastructure “learning” demonstrations.
Hydrogen and Fuel Cell FY2005 Budget Request

Total FY-05 Request: $172.8M
Barriers to a Hydrogen Economy

Critical Path Technology Barriers:

- Hydrogen storage (>300 mile range)
- Hydrogen production cost ($1.50 - 2.00 per gge)
- Fuel cell cost ($30 per kW)

Economic/Institutional Barriers:

- Codes and standards (Safety and global competitiveness)
- Hydrogen delivery (Investment for new distribution infrastructure)
- Education

*Assumes high volume production (500,000 units/yr)
FY04 Fuel Cell Highlights and R&D Emphasis

- Membrane durability and high temperature operation
- Non-precious metal catalysis
- Technology validation through vehicle “learning” demonstrations
- On-board Fuel Processing go/no go decision in June (see Federal Register Notice)
- Development of fuel cells for consumer electronics and **APUs for Heavy Duty Trucks**
- Newly established stationary fuel cell systems contracts
H₂ Production Strategies

For the transition, focus on distributed natural gas

The fuel needed for the hydrogen FCV fleet during the transition years is estimated to be only 2-3% of natural gas used in the United States, and will make little impact on natural gas availability for power plants (where it might displace coal) or on prices.

In the longterm, diversify to renewable energy (esp. wind electrolysis), coal with carbon sequestration, nuclear energy, and other renewable production methods.
Hydrogen Delivery

Key Challenges

- **Pipelines**
 - Retro-fitting existing NG pipeline for hydrogen
 - Utilizing existing NG pipeline for Hythane
 - New hydrogen pipeline: lower capital cost
- **Lower cost, more reliable and durable, and more energy efficient compression technology**
- **Lower cost and more energy efficient liquefaction technology**
- **Novel solid or liquid carriers**
Cross-Cutting Program Elements

Technology Validation: Validate integrated hydrogen and fuel cell technologies in a systems context under real operating conditions.

Safety, Codes & Standards: Facilitate the development and adoption of building codes and equipment standards, international standards, and safe practices that promote insurability.

Education: Educate key audiences about fuel cell and hydrogen systems to facilitate commercialization and market acceptance of these technologies.
Secretary Abraham announced $350 M in Hydrogen Research Projects on April 27, 2004

- **Hydrogen Storage**
 - Three Centers of Excellence for exploratory research in hydrogen storage
 - Individual projects to explore new materials for hydrogen storage

- **Vehicle and Infrastructure “Learning” Demonstration**
 - Teams of automobile and energy companies will work together to demonstrate integrated and complete system solutions operating in real world environments.

- **Fuel Cell Research**
 - Consumer electronics, *Fuel Cells for Auxiliary Power Generation*, and off-road fuel cell R&D.

- **Hydrogen Education**
 - Projects include middle school and high school curricula and teacher professional development.
Auxiliary Power Units

Excellent Heavy-Duty Transportation Market Potential:

- Eliminates heavy vehicle idling
- Supports electrification of truck systems, improving efficiency
- Good power source for refrigeration
- Fueling issue – diesel difficult to reform
Fuel Cells For Auxiliary Power Generation

- Cummins Power Generation

 - International Truck and Engine Corporation and SOFCo-EFS Holdings LLC

 - A solid oxide fuel cell auxiliary power unit will be designed and installed in a truck.

 - Will use fuel processor capable of operating on the 2006 ultra-low-diesel fuel.

 - International will develop and integrate new vehicle system, including heating, air conditioning and other electrical power loads and develop the vehicle interface to the APU.

 - The result will be a demonstration in a real-world application and a significant advance in the integration of energy-efficient technologies in auxiliary power.
Fuel Cells For Auxiliary Power Generation

- Delphi Automotive Systems, LLC
 - PACCAR, Volvo North America and Electricore
 - Objective is to develop, construct and validate an SOFC power system for APU applications
 - Auxiliary power systems in the range of 3-5 kW for APUs for truck idling reduction will be the primary focus.
 - Fuels utilized will be derived from either propane or low-sulfur diesel fuel.
 - A full APU system will be built and tested in a laboratory demonstration with simulated load cycles.
Information Resources

Hydrogen and fuel cells have the potential to solve several major challenges facing America today: dependence on petroleum imports, poor air quality, and greenhouse gas emissions. The Hydrogen, Fuel Cells & Infrastructure Technologies Program is working with partners to accelerate the development and successful market introduction of these technologies.

Hydrogen

Hydrogen is a clean and sustainable form of energy that can be used in mobile and stationary applications.

Fuel Cells

Fuel cells harness the chemical energy of hydrogen to generate electricity without combustion or pollution.

Safety, Codes & Standards

Codes and standards ensure the safe use of hydrogen and fuel cells.

For Students and Teachers

Learn the basics of hydrogen and fuel cells and view a fuel cell animation.

The vision of a new energy economy based on clean, renewable hydrogen is described in the National Hydrogen Energy Vision Document (PDF 1.5 MB).

Although we have a vision for a hydrogen economy, changing the way we produce and use energy is not a simple or overnight task. The National Hydrogen Energy Roadmap (PDF 2 MB) outlines the challenges we face and suggests a path forward to achieve the promise of hydrogen and fuel cells.

The first steps toward the hydrogen future are already underway. The 2002 Annual Progress Report provides a complete list of DOE-funded hydrogen and fuel cell projects for 2002.

- In November 2002, the world’s first energy station featuring hydrogen and electricity co-production opened in Las Vegas, Nevada. More info
- In December 2002, DOE’s education workshop kicked off a new coordinated effort to educate key audiences about hydrogen and fuel cells. More info (PDF 214 KB)

Some of the above documents are available as Adobe Acrobat PDFs. Download Adobe Reader.

http://www.eere.energy.gov/hydrogenandfuelcells