Engineered Glass Composites for Sealing Solid Oxide Fuel Cells

Ronald Loehman, Mathieu Brochu, Bryan Gauntt, Raja Shah, Dale Zschiesche and Hans-Peter Dumm

> Sandia National Laboratories Albuquerque, NM USA

Richard Brow University of Missouri-Rolla Rolla, MO

SECA Core Technology Program Review , May 11 - May 13, 2004 Boston, USA

Supported by the U.S. Dept. of Energy under Contract DE-ACO4-94AL85000

Outline

- · Composite approach to SOFC sealing
- · Glass and composite properties
- Composites applied to different seal designs
- Demonstration of different seal properties
- Summary and conclusions

Composite seals can be engineered to provide a wide range of chemical and mechanical properties

- Composite approach allows glass and filler to be optimized independently
- Glass phase is above its Tg at SOFC operating temperature to reduce thermal and mechanical strains
- Control viscosity, CTE, etc. by adding unreactive powder
- Volume fraction of glass phase can be reduced to minimum for seal

$$\alpha = \frac{\alpha_1 K_1 V_1 + \alpha_2 K_2 V_2}{K_1 V_1 + K_2 V_2} \qquad \eta = \begin{bmatrix} 1 + \frac{\kappa \phi}{1 - \left(\frac{\phi}{\phi_{\text{max}}}\right)} \end{bmatrix}$$

Glass composites allow us to design for specific seal properties

We are studying a wide variety of glass/powder additive composites

- 15 Glass compositions
- 5 Ceramic powders
- 3 Metallic powders
- 5 Particle sizes
- 2 Particle aspect ratios
- 7 Volume fractions of additive
- 6 Sealing temperatures

We are considering glasses with a wide range of properties

Wetting and flow can be controlled by varying the ceramic powder additive

Glass composite viscosity varies with amount and size of filler particles

Al₂O₃; 20vol%; 900°C

30 20

Viscosity increases with decreasing filler particle size and with increasing filler concentration

$$\eta = \left(1 + \frac{\kappa \phi}{1 - \left(\frac{\phi}{\phi_{\text{max}}}\right)}\right)^{2} \quad K \alpha \text{ 1/particle size}$$

$$\phi \Phi = \text{particle packing density}$$

$$\phi_{\text{max}} \quad \text{(volume fraction)}$$

Sandia National Labs - Advanced Materials Laboratory

time (min)

10

Composite coefficient of thermal expansion varies with ceramic addition

Composite CTE depends on individual CTE and modulus values

In this case, a simple rule-of-mixture is a better fit

Sandia National Labs - Advanced Materials Laboratory

Glass crystallization can be controlled by varying the glass and ceramic powder compositions

Glass systems:

- · Crystallization is independent of reinforcement (glass 14a)
- · Crystallization is dependant on reinforcement (glass Brow 41)
- · Controlled crystallization of independent system (glass $14a + TiO_2$)

Glass composites can be used to make a wide variety of different seal designs

- Basic glass composite seals
- Multi-layer seals
- Thermal shock resistant seals
- · Glass/Metal Composite Seals
- Electrically conductive seals
- Thermal shock resistant and electrically conductive seals

Example of basic glass composite seal with glass crystallization

Seal Characteristics

T_g	575° <i>C</i>
Onset Cryst	750° <i>C</i>
Max Cryst T	810° <i>C</i>
Powder/ Vol%	YSZ / 30
CTE _(200-550oC)	8.9×10 ^{-6/o} C

Sealing parameters

Temp	900°€
time	10 min

Glass composites can be used to make multi layer seals

Concept: reduce sealing glass to thin interfacial layer

- · Ceramic: 70 vol% YSZ
- Glass: Tg=703°C , CTE = 9.7×10-6/°C
- Composite CTE = $10.2 \times 10^{-6} / {}^{\circ}C$ (200-700°C)

Ceramic interlayer: 70vol% YSZ - 30vol% Glass Note: no pressure applied

Sandia National Labs - Advanced Materials Laboratory

Robocast cellular structure proposed to make thermal shock resistant seals

- Cellular ceramic structure provides strength and some compliance
- Compatible glass coating provides seal

Glass-metal composite seals can provide electrical connectivity

14α-20vol% Ag 0.5-1.0 μm

14α-20vol% Au 5.5-9.0 μm

14α-20vol% Pd 0.5-1.7 μm

- Percolating network obtained for all metallic additives
- Some dissolution of Ag in glass matrix (EDS analysis)
- · No dissolution of Au or Pd in glass matrix (EDS analysis)

Glass-Ag composites make electrically conductive seals

- Vol fraction of metallic phase slightly above the percolation limit
- Glass wets and coats metal to make composite and to provide seal
- Metal encapsulated by glass on exterior

Electrical resistance measurement

Sandia National Labs - Advanced Materials Laboratory

Micrograph shows electrically conductive seal with glass 14a-Ag composite

•Glass: Tg=575°C, CTE=9.4X10-6/°C

·Filler metal: 20 vol% Ag

·Composite: Tg=566°C, CTE=10.5X10-6/°C

·Resistance: <0.1 ohm

Micrograph shows electrically conductive seal with Brow 37 glass-Ag composite

•Glass: Tg=620°C, CTE=6.8x10-6/°C

Filler metal: 20 vol% Ag

•Composite: Tg=582°C, CTE=9.1x10-6/°C

·Resistance: <0.10hm

Electrical Conductive Seal with high thermal shock resistance

Tubular metallic structure provides electrical conductivity and may provide some compliance that will increase thermal shock resistance

Work by R. Brow shows his glass 27 is compatible with E-brite alloy

Exposure for 96 hours at 750°C

Work in Progress

- · Analyzing interfacial reactions
- Thermal cycling and long time exposure at service temperature (environmental exposure)
- Mechanical testing of composite seal materials
- Mechanical testing of seal adhesion on YSZ substrates
- Development of seals on alloys such as E-brite

Conclusions

- Glass and crystalline compositions can be optimized independently
- Glass composites allow a wide range of properties and seal designs
- Composite approach seems very promising for sealing SOFCs
- We are ready to try to adapt this approach to specific vertical team needs

Your research team

Sandia National Labs - Advanced Materials Laboratory