Development of advanced SOFC anodes

Olga A. Marina Pacific Northwest National Laboratory, Richland WA Olga.Marina@pnl.gov

SECA Core Technology Program Peer Review Boston, MA, May 11-13, 2004

> Pacific Northwest National Laboratory Operated by Battelle for the U.5. Department of Energy

Existing Technology: Nickel-YSZ Anode

Pros

- High electronic conductivity
- Excellent activity for clean reformed fuels
- Chemically and physically compatible with YSZ electrolyte
- Relatively inexpensive

Battelle

Cons

- Sintering / agglomeration during operation
- Sensitive to oxygen
- Too high activity towards steam reforming
- Coking in hydrocarbons
- Easy poisoning by sulfur

Toxic

Objective: Develop a high-performance anode that offers higher tolerance to <u>oxidizing, hydrocarbon-containing and</u> <u>sulfur-containing</u> environments

Composite Sr(La)TiO₃ – Ce(La)O_{2- δ} anodes

Pros

- Excellent activity for H₂ oxidation comparable to that of Ni-YSZ
- Dimensional, chemical and electrochemical stability under multiple red-ox cycling
- Tolerance to sulfur impurities

Battelle

- Resistance to carbon formation in hydrocarbon fuels
- Good TEC compatibility with other cell components
- Good adhesion to YSZ at relatively low temperatures

Cons

- Low electrical conductivity for use as selfsupport
- Potential reactivity with the YSZ electrolyte at high processing temperatures (above 1300°C)
- Loss of electrocatalytic activity following high processing temperatures

Pacific Northwest National Laboratory U.S. Department of Energy 3

Approach

- Synthesis and characterization of oxides
 - Glycine-nitrite synthesis
 - Simultaneously co-synthesized
 - Separately synthesized and mixed
 - Calcination at 1200°C
 - XRD analysis
 - Attrition milling
 - Electrode ink
 - Screen printing on YSZ
 - Sintering at 900-1000°C
- 2- and 3-electrode cell tests
- Evaluation of the electrical, See thermal and thermo-mechanical properties

2-electrode and 3-electrode configuration

Recent Highlights

Evaluated different anode compositions

- Investigated properties of alternative dopants in the ceria phase
- Alternative dopants led to the improved activity for hydrogen oxidation
- Evaluated effects of sulfur (H₂S) on anode performance
- Implemented a deconvolution method to facilitate impedance data analysis

Optimization of anode compositions

- Evaluated different mixtures of Sr_{1-x}La_xTiO₃ + Ce_{1-y}La_yO_{2-0.5y} to identify the most electrochemically active composition
- Activity for hydrogen oxidation is mainly determined by the composition and amount of the ceria phase rather than the titanate phase; samples containing Sr_{0.75}La_{0.25}TiO₃-doped ceria and Sr_{0.65}La_{0.35}TiO₃-doped ceria showed similar activity
- Increasing La content in the ceria phase (Ce_{0.7}La_{0.3}O_{1.85}, Ce_{0.6}La_{0.4}O_{1.8} and Ce_{0.5}La_{0.5}O_{1.75}) led to an electrocatalytic activity increase

Doped ceria phase optimization

Effect of gaseous sulfur additives (280 ppm H₂S) on cell performance

Experimental conditions

Battelle

160 μ m YSZ electrolyte-supported cell; (La)SrTiO₃- Ce(La)O₂ (Ti/Ce=4) anode; LSF20 cathode with SDC interlayer; T=850°C; Cell voltage =0.3 Volt

Pacific Northwest National Laboratory U.S. Department of Energy 8

Effect of gaseous sulfur additives (950 ppm H_2S) on cell performance

U.S. Department of Energy 9

Effect of gaseous sulfur additives (1000 ppm H₂S) on cell performance

Experimental conditions 160 μm YSZ electrolyte-supported cell; (La)SrTiO₃- Ce(La)O₂ (Ti/Ce=4) anode; LSF20 cathode with SDC interlayer; T=850°C ; Cell voltage =0.7 Volt

Results

- 40% performance drop in the presence of 1000 ppm H₂S
- Anode <u>self-recovery</u> after shutting H₂S down (repeated twice)
- No air or hot steam required for sulfur removal
- Visually, no sulfur deposits found on the anode after cooling in H₂
- Sulfur found on the alumina sample holder
- Final performance decrease of 18% may be related to (i) anode degradation in the presence of H₂S; (ii) cathode degradation with time; (iii) observed Pt current collector delamination from the anode; (iv) Pt poisoning by sulfur..

Effect of H₂S on the anode polarization resistance

Predominance diagrams for Ce-S-O system

S₂ partial pressure is 10 and 1000 ppm; Variables are T and pO₂

XPS photoemission spectra of the S 2p region

Control sample (tested in H₂)

#2 (tested in 1000ppm H_2S)

#1 (tested in 950ppm H_2S)

#3 (exposed to 950 ppm H_2S at i=0 A)

Red – as it is

Blue - after 4 kV Ar+ ion sputter ~100 nm

• Control sample was tested in H_2 only and showed no sulfides.

• Samples #1 and 2 tested in H_2 - H_2 S contained surface sulfates. It is likely due to sulfides converted to sulfates in air. No bulk sulfides or elemental sulfur was found.

• Sample #3 contained surface sulfides and sulfates as well as bulk sulfides.

ific Northwest National Laboratory U.S. Department of Energy 13

Deconvolution of impedance spectra for the identification of the electrode reaction mechanism

- Impedance spectra can be described by the equivalent circuit series $LR_s(RQ)_1(RQ)_2...(RQ)_n$.
- Due to the high complexity of the system it is difficult to separate the individual processes by conventional semi-empirical equivalent circuit models.
- A deconvolution method is being implemented to calculate the relaxation distributions related to the physical processes [Schichlein et al., University of Karlsruhe]. With that it should be possible to recognize the different processes without a priori knowledge.
- Each peak on the distribution of relaxation times will correspond to a process.
- Estimating R_n and calculating C_n one can find all (R_nC_n) , suggest an equivalent circuit and using the nonlinear least square algorithm fit the experimental impedance spectrum.

Example of the relaxation time distribution

Rs	R1	R2	R3	R4	RS
		L _°	L _» ,		

2.42E-07
2.54E-05
1.141
0.53721
0.53101
0.87979
0.11771
0.32308
0.96722
0.73155
0.003626
0.91493
0.12234
0.001124
0.84598
0.32691
3.59E-07

Pacific Northwest National Laboratory U.S. Department of Energy 15

Summary

- Anode composition was being optimized by
 - Varying the La dopant in the titanate phase to increase the electronic conductivity;
 - Varying the La dopant amount in the ceria phase to increase the catalytic activity;
 - Using alternative dopants in the ceria phase to improve the activity.
- Cell performance was evaluated in fuels containing potential impurities (sulfur).
- Long-term performance test revealed relative tolerance of ceramic composites to H₂S:
 - No performance loss was seen in fuels with H₂S lower than 30 ppm.
 - Degradation in 50-1000 ppm of H₂S was reversible.
 - XPS analysis of anodes operated in H₂-H₂S did not show the bulk sulfide formation.
- Electrode reaction mechanisms are being elucidated using a deconvolution of impedance spectra approach.

Future work

- Long-term anode testing for carbon tolerance
- Anode tests in a variety of hydrocarbon fuels
- Scale-up testing to include larger dimension cells
- Further optimization of anode materials and microstructures
- Improvement of mechanistic understanding of effects of sulfur and carbon on anode performance

Acknowledgements

Financial support from the SECA Core Technology Program, U.S. Department of Energy, National Energy Technology Laboratory (NETL).

Contributors

- L. Pedersen, J. Stevenson, M. Engelhard, G. Maupin,
- S. Simner, K. Meinhardt, A. Leonide

