

An Overview of Montana State University HiTEC Research Activities

Lee H. Spangler, Director MSU-HiTEC

HiTEC (the High Temperature Electrochemistry Center) is a collaborative center between Montana State University and Pacific Northwest National Laboratory

MSU Personnel:

Steve Shaw (EE) Max Diebert (Chem Eng.)
Dick Smith (Physics) V. Gorokhovsky (Arcomac)
Hashem Nehrir (EE) Hugo Schmidt (Physics)

Hongwei Gao (EE) Yves Idzerda (Physics) Lee Spangler (Chem)

PNNL Personnel:

G. Yang
G. McVay
V. Shutthanandan (EMSL)

O. Marina
L. Pederson

P. Reike M. Khaleel

D. Gelles (EMSL)

Outline

- Dynamic models of FC for DG studies
- Novel Adaptive power control scheme
- Large Area Filtered Arc Deposition coating technology for interconnects
- Materials characterization of coatings
- Area Specific Resistance measurements of coated materials

Needs for Dynamic Model of FC

FCs don't respond as fast as desired to electrical load transients, mainly due to their slow internal chemical reaction.

Electrical load switching Motor starting

A dynamic model is needed in DG studies:

FC dynamic performance under load transients

Real-time control of FCs

Power sharing in multi-source DG applications

Dynamic Models of Fuel Cells

Equivalent Electrical Circuits

$$f_1(I,T) = -\frac{N_{cell}RT}{2F} \ln \left[p_{H2}^* \cdot (p_{O2}^*)^{0.5} \right] + N_{cell}k_E(T - 298)$$

$$\begin{cases} f_2(I) = N_{cell} E_{d,cell} \\ E_{d,cell}(s) = \lambda_e I(s) \frac{\tau_e s}{\tau_e s + 1} \end{cases}$$
 (Fuel delay effect)

Activation

$$f_3(T) = (T - 298) \cdot a$$

$$R_{act} = \frac{V_{act2}}{I} = R_{act0} + R_{act1} + R_{act2}$$

Equivalent Electrical Circuits (contd)

Concentration

$$R_{conc} = R_{conc0} + R_{conc1} + R_{conc2}$$

where *Rconc0* is the constant part of *Rconc* and *Rconc*1, *Rconc*2 are its current-dependent and temperature-dependent parts.

Ohmic

$$R_{ohm} = R_{ohm0} + R_{ohm1} + R_{ohm2}$$

Thermodynamic Block

 C_h =Heat Capacity

$$\dot{q}_{in} = (E - V_{out}) \cdot I$$

$$R_T = 1/(h_{cell} \cdot N_{cell} \cdot A_{cell})$$

The voltage across the capacitance (Ch) is the overall temperature of the fuel cell stack, T.

Equivalent Electrical Circuit of the Double-Layer Charging Effect

$$V_{C} = (i - C\frac{dV_{C}}{dt})(R_{act} + R_{conc})$$

$$V_{outl} = E - V_{C} - V_{act1} - V_{ohm}$$

Model Validation for PEM FCs

Simulation and Experimental Results:

PEMFC Steady-state Response

Simulation and Experimental Results:

Transient responses of the models in long time range.

PEMFC Dynamic Response

Transient responses of the models in short time range.

Multi-source Control Demonstration System

Multi-source Control Objective

Cluster Weighted Model Concept

V-Section Composition

Example Transients

Cluster Training

Time Evolution of Log-Likelihood

Results

Multisource Implementation

Multisource Implementation Status

- RCWM theory developed
- Control works in simulations
- Hardware is built, works with AWG
- FPGA real-time platform identified
- Need to code RCWM in FPGA
- Patent application is submitted

MSU Materials X-ray
Characterization Facility
at the National Synchrotron
Light Source

U4B - Soft X-rays X23 - Hard X-rays - NEW

Using synchrotrons to understand material properties.

- XAS
- XAFS
- XRS
- Characterization of buried interfaces at angstrom resolution

Interface Stress (LCMO)

Variation in chemical signature of solid oxide fuel cell material ($La_xCa_{1-x}MnO_3$) with interfacial stress ΔS .

Stress created by selecting **substrate** to create a lattice mismatch.

Submitted: Phys. Rev. B (03)

Interface Stress (LSMO)

Variation in chemical signature of solid oxide fuel cell material (La_xSr_{1-x}MnO₃) with overlayer stress.

Stress created by changing thickness of an overlayer with a lattice mismatch.

REF: Appl. Phys. Lett. <u>75</u>, 3384 (02)

SOFC Stack Current Collector

Function and Problems

- Acts as a physical barrier between the fuel and oxidant (hermetic, chemically and mechanically stable, and thermally shock resistant)
- Acts as a low resistivity electrical conduit over the lifetime of the device
- Provides mechanical support and stability to the stack
- "...it appears that in the long term, few if any commercially available heat-resistant alloys will completely satisfy the tecchnical requirements as the interconnect components in SOFC stacks." Z. Yang, et al. JES 150, A1188 (2003)
- Design new bulk alloys, e.g. Crofer 22 APU
- > Surface engineering: surface alloy or surface coatings
 - New problems: Adhesion, interdiffusion, wear resistance, etc.
 - * Jeff Stevenson PNNL

CrAIN multilayer coatings

- Polished (1500 grit) steel disks: 304, 440, Crofer APU 22
- Multilayer coating at Arcomac: {(CrN)_m/(CrN)_n(AIN)_n}_p
 Wear resistant; CrN to maintain conductivity; AIN for oxidation resistance
- Anneal in air furnace at 800 °C for 1-25 hours
- Analysis: RBS, NRA, SEM, AFM, TEM, XPS, ASR
- Goal: Tailor the multilayer structure and composition to optimize oxidation resistance, conductivity, adhesion

Large Area Filtered Arc Deposition **ARCOMAC**** (LAFAD) Technology

Benefits of Filtered Arc Deposition

Structure of multilayer coatings

Architecture of coatings

$\{(CrN)_{m}/(CrN/AIN)_{n}\}_{p}$				
<u>Sample</u>	<u>m(s)</u>	n(s)	p(reps)	<u>Description</u>
010	120	60	20	60m DR
018	105	15	15	30m DR
021	40	20	30	30m DR
026	40	20	60	60m SR
028	40	20	60	60m DR
036		4hrs		superlattice
023	30m			thick CrN

AFM before(top)/after(bottom)

oxidation: 800 °C in air for 25 hr

Ion Beam Analysis: RBS, NRA

- RBS: 2 MeV He⁺ ions
- NRA: 1 MeV d⁺ ions
- Yield = $Q \sigma \Omega$ (Nt)
- Quantitative

- Kinematics: mass resolution
- Energy loss: depth scale
- Cross section: RBS has more sensitivity for heavy elements
- Nuclear reaction: use (d+,p) reactions for light elements (O, N, C)

RBS and simulation: 2 MeV He⁺

Evolution of RBS spectra with annealing

- Fit thickness, composition in each layer
- Most sensitive to the heavy elements
- Check against SiO₂ and Si₃N₄ standards

RBS Temporal Concentration Profiles: 026 @ 800 C

RBS Concentration Profiles:

Before(top) after (bottom) 4 hrs @ 800 C

NRA and simulation: 1 MeV d⁺

- 16O(d,p)17O 14N(d,p)15N
- Fit thickness, composition in coating
- Match total conc. in RBS
- Use SiO₂ and Si₃N₄ standards

Test of Oxidation Evolution of N and O peaks with annealing

Test of Oxidation

Total Nitrogen and Oxygen Content: Evolution with annealing time @ 800 °C

Comparison with uncoated Blank

ASR Results for Coated Crofer 22APU

Coating:	CrN Layer Thickness,	CrN/AIN bi-layer thickness, nm	Total Thickness, μm (# Repeating Units)	Substrate Steel: X = Results Presented (ID)		
	nm			304	440A	Crofer 22APU
CrN/(CrN/AlN) Multilayer	~10	~1.1	~0.5 (25)		X	
CrN/AIN Superlattice		~4.5	~1.6 (360)	X	X	X (CK)
CrN/AIN Superlattice		~1.1	~1.2 (1080)	X	X	X (CN)
Uncoated				X	X	X (U)

ASR Results for Crofer 22APU

(Oxidation at 800°C in Air)

ASR Stability

Acknowledgements

- High Temperature Electrochemistry Center (HiTEC) at PNNL and MSU
- Work supported by DOI and DOE subcontract from PNNL, 3917(413060-A).
- Work at PNNL (EMSL) supported through OBER (DOE).
- PNNL Personnel:
 - V. Shutthanandan
 - D. Gelles
 - G. Yang
 - O. Marina
 - P. Reike
 - L. Pederson
 - others

Acknowledgements

Senior Personnel:

Max Diebert (Chem Eng.)

V. Gorokhovsky (Arcomac)

Hashem Nehrir (EE)

John Sears (Chem Eng.)

Dick Smith (Physics)

Hongwei Gao (EE)

Yves Idzerda (Physics)

Hugo Schmidt (Physics)

Steve Shaw (EE)

Lee Spangler (Chemistry)

Students:

Postdoctorals

Ruth Chien (Physics)

C.V. Ramana (Physics)

Graduate Students

Paul Gannon (Chem. Eng.)

Marc Keppler (EE)

Matt Pfluge (Chem. Eng.)

Cynthia Tripp (Physics)

Caisheng Wang (EE)

Tao Zhu (EE)

Undergraduates

Cameron Chen

River Hutchison

Mike Patterson

Will Rewitz

Kyle Story

David Owenby

Don Buchholz

Jiaping Han (Physics)

Joe Dvorak (Physics)

Johnathon Holroyd (Physics)

Alex Lussier (Physics)

Rahul Sharma (EE)

Sarah Vogt (Chem. Eng.)

Ying Wu (EE)

Anders Knospe

Tristan Butterfield

Melissa McIntyre

Pat Kujawa

Carla Lay

Matt Zahller