10kWe SOFC Power System Commercialization Program Progress

May 11, 2004
Boston, MA

Dan Norrick
Manager Advanced Development
Cummins Power Generation
• Cummins Power Generation
• Cummins - SOFCo Team
• SECA Program Progress
 – System Design & Application
 – Cell and Stack
 – Hot Box
 – Balance of Plant
 – Controls & Power Electronics
Cummins Inc.

Power Generation

May 11, 2004
SECA Annual Workshop Boston
Cummins Power Generation
World Headquarters and Manufacturing
Minneapolis, Minnesota
Cummins Power Generation

Developing and manufacturing a wide range of power generation equipment...
Energy Solutions

- **Containerised Diesel & Gas GenSets**
 - 1005 to 2000 kW
 - 50 & 60 Hz prime & standby rating
- **Projects mainly 2 to 30 MW**
 - prime mover sales
 - turnkey solutions
 - O&M contracts
 - equity-based full servicing
 - financing
- **Key Drivers**
 - power availability (mainly off-grid)
 - power reliability (high-quality or critical)
 - price insurance/arbitrage
 - energy optimization
- **Customer Types**
 - industrial end-users
 - commercial/public-sector end-users
 - utilities
 - developers
 - energy service companies (ESCOs)
 - regional authorities/government
Small Scale Fuel Cell Applications and Fuels

- **Recreational Vehicle**
 - Diesel

- **Truck APU**
 - Diesel

- **Marine**
 - Diesel

- **Military**
 - Diesel

- **Residential DG**
 - Diesel

- **Commercial Mobile**
 - Diesel

- **Telecommunications**
 - Natural Gas or Propane
• Electronic controls
• Power electronics
• Fuel systems
• Air handling systems
• Noise and vibration
• System integration
• Manufacturing
• Marketing, sales, distribution

• Planar SOFC technology
• Reformer technology
• Material science
• Heat transfer
• Computational fluid dynamics
• Numerical modeling
• Multilayer ceramic manufacturing
Progress to Plan

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Product Profile Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Develop Steady State Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Develop Transient Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Validate single cell test methodology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C1 Hot Box Mechanical Design Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Deliver C1 reformer components to Hotbox</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fuel Cell Boost Hardware ready for application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Deliver C1 Hot Box to Cummins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C1 simulated fuel cell system test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Preliminary 15cm components available</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Deliver 2 Power Cell Units for C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>C1 Prototype - stable steady state operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Deliver C2 reformer components to Hot Box</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>C2 control system ready for application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Deliver C2 Hot Box to Cummins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>C2 Control & Power Electronics Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Start development testing on C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Start DOE test sequence on C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Finish DOE test sequence on C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Commercial target: same size envelope as Diesel RV Genset

0.49 m³ (17.4 ft³)
Fuel Cell System Mock-Up
Fuel Cell System Mock-Up
Staged prototyping -- C1 and C2

C1 Prototype
- Development tool
- 10cm x 10cm cells
- 2 x 47 cell stacks
- Not packaged
- DC output
- Characterization testing
- Limited operating hours
- Operational June 2004

C2 Prototype
- Program deliverable
- 10cm x 10cm cells
- 4 x 70 cell stacks
- Integrated hot box assembly
- Power conditioning
 - Load sharing
 - 120VAC output
- Complete SECA test plan
- 1500+ operating hours
- Operational June 2005
SOFC Stack Technology

• “All-Ceramic” stack design
 – Cells and multi-layer interconnect are CTE matched
 – No ceramic-to-metal seal
 – No metal interconnect corrosion
 – Compatible with MLC manufacturing methods

• Co-flow design advantages
 – Improved temperature distribution
 – Simplified manifold and improved sealing
 – Improved reactant distribution

Co-Flow Multi-layer Ceramic (MLC) Interconnect
SOFC Stack Development

2002
Short Stacks
(2-5 cells)

- ASR ~ 2.5 ohm-cm²
- PD ~ 75 mW/cm²
- Power Deg > 20% / 500 hrs
- Fuel Utilization > 70%

2003
Medium Stacks
(20 cells)

- ASR ~ 1.5 ohm-cm²
- PD ~ 125 mW/cm²
- Power Deg < 4% / 500 hrs
- Fuel Utilization > 75%
SOFC Stack Development

Q1 2004
Tall Stacks
(45-50 cells)

- ASR ~ 1.5 ohm-cm²
- PD ~ 125 mW/cm²
- Power Deg < 4% / 500 hrs
- Fuel Utilization > 75%

Q4 2004
PCU (50-70 Cells)

- ASR < 0.75 ohm-cm²
- PD > 250 mW/cm²
- Power Deg < 2% / 500 hrs
- Fuel Utilization ~ 80%
SOFC Stack Scale-up

- Achieved acceptable short stack performance Q3 2003
- Began transition to tall stacks
 - Horizontal orientation for assembly and operation
 - New manifold arrangement
 - No change to sealing materials, current collector, or cell-to-interconnect contact materials
Tall Stack Development

• First build in early 2004
 – > 200 hrs operation on hydrogen with FU >70%
 – > 200 hrs operation with reformed natural gas with FU >75%

• Second test underway
 – Objective: Demonstrate C1 operating parameters (FU, air flow, etc)

• Two stacks for C1 prototype will be assembled in June
Performance Improvements

- Instrumented short stack allows isolation of contributions to stack resistance
- Significant non-cell contributions to stack ASR and power degradation eliminated
 - Non-cell ASR contribution reduced to < 0.2 ohm-cm²
 - Short stack power degradation reduced to < 3% / 500 hrs
2002 Short Stacks – Degradation Reduced

- Anode-to-interconnect contact largest contributor
- Implemented new anode contact ink
- Significant reduction in degradation rate
- Major non-cell contributor to degradation is now the cathode-to-interconnect contact

300 hr Relative Resistance

- Cell, 40%
- Anode-to-interconnect, 54%
- Cathode-to-interconnect, 1%
- Current collector, 4%

1000 hr Relative Resistance

- Cell, 68%
- Cathode-to-interconnect, 15%
- Interconnect, 4%
- Anode-to-interconnect, 1%
- Current collector, 4%
- Collector, 12%
Calculated average degradation from 0 to 1175 hours = 2.9% per 500 hours,
Initial ASR = 1.36 ohm-cm²
SOFC Cell Development

• 2002 cell development outcomes
 – Reached performance plateau with YSZ electrolyte-supported cells
 – Identified significant problem with integrity of co-fired cells

• 2003 cell development shifted to “dual path” approach
 – External sources for cells and cell technology
 • Baseline 3YSZ post-fired cell for stack development
 • Improved electrolyte-supported cell using ScSZ electrolyte
 • Anode-supported cells
 – Internal cell development focused on co-fired interconnect-supported cells
SOFC 2003 Cell Performance Progress

- Baseline 3YSZ electrolyte-supported cell for stack development
 - Stable, repeatable performance (ASR ~ 1.2 ohm-cm²)
- Evaluated ScSZ electrolyte-supported cells produced by SOFCo and several external sources
 - ASR = 0.7 – 0.8 ohm-cm²
 - Degradation exceeds target
- Evaluated anode-supported cells from external suppliers
 - ASR ~ 0.45 – 0.6 ohm-cm²
 - Degradation exceeds target
 - Limited short stack testing
- Work planned for 2004
 - Cooperative development working with suppliers to improve cell performance
 - Aggressive insertion of new cells into stack development
Driving ASR down

Single-Cell Performance Testing

- 3YSZ Electrolyte-supported
- ScSZ Electrolyte-supported
- Anode-supported

Graph showing the ASR (ohm-cm²) over time (hours) for different electrolyte-supported systems.
Manufacturing Status - Background

Interconnects
- Manufacturing processes established
 - Production moved to new facility in 2003
 - Over 450 interconnects produced YTD in 2004
- In-house prototyping demonstrated for 10 and 15-cm interconnects

Cells
- Developing commercial sources
 - 2 established
 - 1 under development
- SOFCo development work for improved performance
 - PNNL
 - NASA Glenn
Scale-up to 15 cm Interconnects

- Scale-up work began Q1 2003
 - No major problems
 - Current engineering processes applied
- Design engineering
 - Flow / channel common to 10 cm
 - Channel depth increased for delta P
 - Via density preserved
 - I/O manifolds scaled for flow
- Modeling
 - Parallel channel pressure modeled with AFT-FATHOM
 - Electro-chemical model being developed from 10 cm baseline (2 dimensional EZ-Thermal)
- Produced preliminary 15 cm prototype parts in December 2003
- Prototype parts available for short stack testing in October 2004
SOFC Stack Development - Summary

- **Stack Scale-up**
 - Successful scale-up to tall stack for C1
 - On track with 70-cell PCU for C2 (mid 2005)

- **Performance and Cost**
 - Significant reduction in non-cell contributions to stack ASR and degradation
 - Stack performance largely driven by cells
 - Dual path approach to evaluating anode-supported cells and advanced ScSZ electrolyte-supported cells
 - On track to meet Phase 1 performance targets
 - Achieving cost target = meeting performance targets + implementing low-cost materials
Fuel Processor Development

CPOX Propane/NG Reformer for 10 kWe SOFC System

• High capacity: 40 kW / liter
• Waterless
• Rapid start-up: < 1 minute
• Turndown ratio: > 5:1
• Lightweight, compact design
 - Weight < 2 kg
 - Volume ~ 0.25 liter
• Efficient reformer
 - 70% on LP
 - 80% on NG
Fuel Processor Success

- Scaled-up waterless CPOX meets performance goals
- Completed transition from LP to Natural Gas for SECA demonstration
- Reformer operated on natural gas for >2500 hrs at 1.5 kWe equiv
- Stack operated on NG reformate for >1800 hrs
 - Carbon free operation verified through post-test exams of stack and manifolding
 - No performance issues
Natural Gas Reformer Status vs. Targets

<table>
<thead>
<tr>
<th>TARGET</th>
<th>CURRENT VALUE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>1 kWe</td>
<td>1.3 kWe</td>
</tr>
<tr>
<td></td>
<td>5 kWe</td>
<td>TBD (5-10 kWe)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complete for C1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On-going for C2</td>
</tr>
<tr>
<td>Reformer Efficiency</td>
<td>~88%</td>
<td>85 %</td>
</tr>
<tr>
<td></td>
<td>(at equilibrium)</td>
<td>67 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High load, Low load</td>
</tr>
<tr>
<td>Slips (%) Methane C₂⁺</td>
<td>0</td>
<td>0.4 – 4.0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0 – 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH₄ converted in SOFC stack</td>
</tr>
<tr>
<td>Turndown</td>
<td>5 : 1</td>
<td>4.3 : 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not an issue</td>
</tr>
<tr>
<td>Carbon Deposition</td>
<td>No</td>
<td>No issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No C deposits in stack after >1,800 hrs test</td>
</tr>
<tr>
<td>Cost</td>
<td>$60/kW</td>
<td>On target</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Based on C1 experience</td>
</tr>
</tbody>
</table>
Fuel Flexible CPOX Design

Fuel Design/Size
- LP: 25mm D x 150mm L
- Natural Gas: 25mm D x 150mm L

Operation
- **Feed Preheat**: 200°C (LP), 300°C (Natural Gas)
- **Turndown (% load)**: 100% to 20% (LP), 100% to 25% (Natural Gas)

Performance
- **Fuel Conversion (%)**: 75 - 85 (LP), 90 - 98 (Natural Gas)
- **CPOX Efficiency (%)**: 65 - 72 (LP), 75 - 85 (Natural Gas)
- **H₂ + CO (Dry mole %)**: 40 - 45 (LP), 47 - 50 (Natural Gas)
- **H₂ / CO Ratio**: 1.2 (LP), 2.0 (Natural Gas)
- **Methane Slip (dry mole %)**: 0.5 - 2.0 (LP), 0.4 - 4.0 (Natural Gas)
- **C₂+ Slip (Dry mole %)**: 0 - 2.0 (LP), 0 - 0.04 (Natural Gas)
Fuel Conversion vs. Turndown

Conversion = \frac{[CO_2 + CO]_{product}}{[Fuel Carbon]_{in}}

Catalyst B with Natural Gas

Catalyst A with LP Gas
Reformer Efficiency vs. Turndown

Eff = \frac{[H_2 + CO]_{LHV}}{[Fuel \text{ In}]_{LHV}}

Catalyst B with Natural Gas

Catalyst A with LP Gas
C1 Development Unit

- Component and sub-system operation/control development
- Stack simulators utilized prior to stack installation
C1 Prototype in Cell 21 at CPG

- Ignition Control
- Exhaust
- Startup Burner
- Combustor
- Controls
- Hot Box
C2 Phase I Demonstration Unit

- Full thermal integration
- Prototype level packaging
- 4 x 70-cell (10 cm) stacks
- Hardware design nearing completion
- Long-lead hardware orders placed
- Overall size targets on track for APU product goal
 - 4-stacks
 - 85cm L x 64cm W x 41 cm H
Balance of Plant

• Balance of Plant concept translated into functional C1 systems
 – Components selected to meet the functional requirements
 – Functional checks completed on
 • Anode air and fuel supply systems
 • Cathode air supply and bypass subsystems
 – First operational testing of the C1 system with simulated stacks conducted 12/17/03
 – Test cell up-fit for fuel cell specific instrumentation, safety, and controls completed

• C1 analysis and experience will be factored into C2
Purpose of controls and power electronics

- Thermal and fluid management
 - Control stack average temperature.
 - Control temperature gradient across the stack.
 - Control flows to match current demand and fuel utilization

- Load management
 - Buffer required load power and fuel cell dynamics.
 - Ramped stack loading
 - Managed energy storage
BOP controls hardware architecture

• Controls hardware
 – Designed Q1-Q2 2003
 – Implemented Q3-Q4 2003

• Controls sited on CPG production master control unit (MCU) for development purposes
 – Adapts existing software platform and tools.

• Distributed architecture based on a CAN serial bus.
 – Provides flexibility in choice of actuators.
 – Simplified interface to power electronic controls.
SOFC Controls and Power Electronics

- Master Control Interface: Completed Q3 2003
- Master Control Unit: CAN Bus Implemented Q3 2003
- CAN Bus: Q3 2003
- CAN/O Modules: Completed Q2 2003
- Sensors & Actuators: Completed Q4 2003
- Power Electronics: Sensors/Actuators Completed Q4 2003
Balance of Plant Controls Hardware

- Cathode Blower
- Mass Flow Controls
- CAN I/O Modules
- MCI
- MCU
- Cathode Blower
- Mass Flow Controls
SOFC Controls and Power Electronics

Master Control Interface Board

• 11 Type K thermocouple channels.

• 11 filtered analog input channels.

• 7 discrete digital outputs, each rated to 7.5A.
Power Electronics Architecture

- Two options for Power Electronics architecture.

 - **Option 1** initially selected based on lowest cost

 - **Option 2** selection driven by control dynamics – cost impact reduced in parallel commercial project
SECA Program Progress -- Summary

- Matrixed development of all-ceramic cells and interconnects demonstrating progress consistent with Phase 1 targets
- First generation prototype on schedule consistent with product goals
- Parallel paths in place to evolve systems and components
- Demonstrated performance of CPOX reformer
- BOP, controls, and power electronics available to support system development
Acknowledgements
SECA Program
Cummins Power Generation
10kWe SOFC Power System Commercialization Program
Boston, MA
May 11, 2004

This presentation was prepared with the support of the U.S. Department of Energy, under Award no. DE-FC26-01NT41244. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the DOE.