

SECA Program at Siemens Westinghouse S. D. Vora

April 2003

Siemens Westinghouse Power Corporation April 15, 2003

SIEMENS

Siemens AG Power Generation

Information and **Transportation Automation Power** Systems (TS) Communication and Drives (A&D) **Generation (PG) Networks (ICN) Industrials** Siemens Information and Solutions and Vutomotivo Co **Power Generation** Mo Sie **Fossil Power** Bu **Instrumentation & Controls** Generation Gn **Americas Industrial Applications Europe, Middle East,** Africa, Asia/ Pacific **Stationary Fuel Cells Operating Plant** Services **Ceramics and Porcelain** (Carved out in Q4 FY02) Gas Turbine- and **Combined-Cycle Plants** JV JV Framatome ANP **Voith Siemens Hydro Steam Turbine Plants** since Jan. 2001 since April 2000 and Electric Generators (Siemens share 35%) (Siemens share 34%)

Medical Solutions (Med)

Osram **GmbH**

Siemens Financing Services (SFS)

Infineon Technologies AG (Siemens subsidiary)

Siemens Financing Services (SFS)

Siemens Power Generation Employees 25,000

Stationary Fuel Cells

- 150 Employees
- Chartered to Commercialize SOFC Power Systems for the Distributed Generation Market
- Focused on Seal-less, Cathode Supported Tubular SOFC Design
- YSZ Electrolyte, 1000 °C Operating Temperature
- Expertise in
 - **♦** High Temperature Materials
 - ◆ Ceramic Processing, Ceramic Powder, Cell and Module Manufacturing
 - Electrochemistry and Cell testing
 - ♦ Hydrocarbon Reformation
 - **♦** BOP Assembly
 - **♦** Systems Testing

Stationary Fuel Cells - Accomplishments

- Developed State-of the art, 150 cm Active Length (834 cm² active area), Cathode Supported Tubular SOFCs
- Demonstrated Lifetime of >60,000 Operating Hours with Voltage Degradation Rates < 0.1% per 1000 Hours and Thermal Cycle Capability of >100 Cycles
- Developed Internal Reformation Technology
- Designed, Manufactured and Tested Complete Atmospheric and Pressurized Hybrid SOFC Power Systems

SOFC Power System Demonstrations with Tubular SOFCs

100 kWe Atmospheric Combined Heat and Power (CHP) System

- 20,000+ hours with no measurable voltage degradation
- 46% electrical efficiency
- Grid and District Heating Connected

200 kWe Pressurized Hybrid (PH) System

- 3000+ hours
- 52% electrical efficiency

Highest Priority for Commercialization

Lower Product Cost (\$/kWe)

Cost

Power Density

SECA Program Objectives

Develop SOFC System Prototypes with a net Power Output of 5-10 kWe for Stationary and Transportation Applications with a Cost Target of < \$ 400/kWe.

Projected Fuel Cell Market in 2012

SECA -10 Year Roadmap

Siemens Westinghouse SECA Team

Technology Team Customer / Market Team

	Remote/Residential	Transportation	Military
Siemens Westinghouse	Fuel Cell Technologies	Ford	Newport News
Fuel Cell Technologies	Lennox	Eaton	Eaton
Blasch Precision Ceramics	Trane		
Zircar Refractory Ceramics	Dominion		

Key Team Members provide Market Access and Industry Specific Expertise To broaden Market Opportunities and New Applications

SECA Program Technical Approach

- Improve Cell Performance through High Power Density (HPD)
 Cathode Supported Planar Cell New Cell Geometry
- Improve Cell Performance by Reducing Activation Polarization at Interfaces - New Cell Materials
- Lower Operating Temperature (800°C) New Cell Materials
- On-cell Reformation Elimination of Internal Reformers
- Low Cost, High Volume Manufacturing Process Development
- Low Cost Module Materials Helped by Lower Operating Temperature
- BOP Design Simplification Parts Elimination

High Power Density (HPD) Cathode Supported Planar Concept

2.2 cm Cylindrical (Present)

Cathode Supported Planar

- Maintains Seal-less design
- Reduction in resistance and cell cost
- Increase in cell power (power density and surface area)
- More compact stack

Development of HPD Cell Design

- Computational Thermal Model of HPD Cell Developed to Optimize Cell Design and Dimensions
- Theoretical Performance Estimated by Electrochemical modeling

Evolution of Cell Design

Standard Cylindrical

HPD5R0-2002

HPD5R1-2003

HPD10 >2003

Temperature Distribution in HPD10 Cell

Extrusion of HPD Tube

Tubular and HPD Cells

Performance Comparison - Tubular Vs. HPD5

Cell Power Enhancement

- Developed Mixed Ionic and Electronic Conducting Composite Interlayer
- Lowered Activation Polarization at the Cathode-Electrolyte
 Interface Enhanced Cell Performance at Lower Temperatures

Performance Comparison - Std. Interlayer Vs. Composite Interlayer (Tubular Cells)

Performance Comparison - Tubular Vs. HPD

Cell Development - Summary

- Reduction in Ohmic Resistance through HPD Design
- Reduction in Activation Polarization through Composite Interlayer
- Target Power Increase for HPD Cells Compared with Tubular
 Cells 2X at Half the Length
- Improves Packing Density

Low Temperature Electrolyte

Selected LSGM (Mg and Sr doped lanthanum gallate) for Evaluation

LSGM As Low Temperature Electrolyte

- High Electrolyte Oxygen-ion Conductivity: σ(LSGM@800°C)= σ(YSZ@1000°C)
- Excellent Chemical and Structural Compatibility with Perovskite Cathode Substrate
- Higher Cell Performance over a Wider Temperature Range
- Potential Cost Reduction due to Lower Operating Temperature

Characterization of Properties of LSGM and Compatible Materials

- Electrical Conductivity
- Thermal Expansion Coefficient
- Dimensional Stability
- Chemical Reactivity of LSGM with Cathode Substrate at Operating Temperature
- Electrochemical
- Feasibility of Plasma Spraying LSGM Film on Cathode Substrate

Selection of LSGM and Compatible Materials

Electrolyte: LSGM

Cathode: Doped Lanthanum Manganite

Interconnection: Doped Lanthanum Chromite

Cathode Interlayer: Mixed Ionic and Electronic Conductor

Anode Interlayer and Anode: TBD

Over 10 compositions of Cathode and Interconnection were selected for Screening

Plasma Spraying of LSGM Layer on Cathode Substrate

As sprayed

Low Temperature Electrolyte - Summary

- Selected Electrolyte and Cathode Compositions
- Prepared Powders for Cell Preparation and Electrochemical Characterization
- Initiated Feasibility Study of Plasma Spraying LSGM on Cathode

Low Cost High Volume Manufacturing

- Initiated Feasibility study of All Sintered Cell
 - Higher Material Utilization
 - Reduced Manufacturing Steps
 - > Higher Throughput
- Initiated Feasibility Study of Low Pressure Plasma Spraying (LPPS)
 - Higher Material Utilization
 - Lower Densification Temperature
 - > Higher Throughput

Low Cost Module Materials (With Blasch)

- Initiated Development of Low Gas Permeable Ceramic Stack Housing
- Initiated Feasibility Study of Lower Purity Insulation (Possible Due to Lower Operating Temperature)

Model Showing FCT Alpha Prototype

FCT Recirculator Design in Testing

Prototype Combustor and Flame Holder Designs

Summary

- Incorporating Lessons Learned from Alpha Demonstration Units.
- Beta Unit with Full Length (834 cm² active area) Tubular Cells Being Designed with an Objective to Maintain Commonality Between Beta and SECA Units.
- Design of SECA Unit with HPD Cells Initiated.

SECA Program Summary

- Contract for First 2 years Signed in September 2002
- HPD5 Selected as Baseline Design for Development and Test
- HPD10 Undergoing Evaluation
- LSGM vs. YSZ Evaluation Initiated
- LPPS, Thin-film Sintering Processes being Evaluated as Alternative to Atmospheric Plasma Spraying
- Low Cost Module Materials Being Investigated
- Generator Design and BOP Simplification Initiated

Future Work

- Continue Development of Cell Design and Cell Fabrication
- Make a Decision on LSGM Vs. YSZ for POC Unit
- Develop Generator Design for POC unit

Stationary Fuel Cells

- Siemens Westinghouse Stationary Fuel Cells converted from R&D department to a business unit with a pilot manufacturing facility
- First environmental friendly commercial product CHP 250

(no SOx; no CO; NOx < 1ppm)

- New Commercial factory (Milestones):
 - 1-Site Selection/Groundbreaking
 - 2-Finalized Manufacturing Building
 - 3-Implemented Manufacturing Equipment
 - 4-Qualified Production Processes
 - 5-Start Commercial Shipments

Stationary Fuel Cells - Manufacturing Facility

Munhall, Pennsylvania Location...180,000 sq. ft. - Phase I Building