SECA Solid Oxide Fuel Cell Program

Fourth Annual Solid State Energy Conversion Alliance Meeting
April 15-16, 2003
Seattle, WA

Overall objective

 Demonstrate a fuel-flexible, modular 3-to-10-kW solid oxide fuel cell (SOFC) system that can be configured to create highly efficient, cost-competitive, and reliable power plants tailored to specific markets

Development team

- GE Power Systems
 - Torrance, CA
 - Schenectady, NY
 - Greenville, SC
- GE Global Research
 - Niskayuna, NY

SOFC System Concept

SOFC

- High-performance reduced-temperature cells
- Operation on light hydrocarbons
- Tape calendering manufacturing process

Fuel processor

- Low-cost, fuel-flexible fuel processor design
- Catalytic process
- Pre-reforming function

Other subsystems

- Integrated thermal management
- Flexible control subsystem

Program Features

- System analysis
- Cost estimate
- Stack technology development
- Fuel processing
- Thermal management
- Control and sensor development
- Power electronics
- System prototype demonstration

- System approach
 - Design for Six Sigma
- Development focus to meet SECA targets
 - High performance
 - Low cost
 - Reliability
 - Modularity
 - Fuel flexibility

System Design and Analysis Approach

Baseline System Concept

Performance Estimates

	Stationary (Baseline)	Mobile	Military
Fuel	Natural Gas	Gasoline	Diesel
Input Fuel, lb/hr Air, lb/hr Water, lb/hr	2.0 186 2.3	2.0 185 4.9	1.7 188 4.2
Power Fuel cell, kW Net, kW	5.8 5.0	4.4 3.7	3.2 2.5
Efficiency Net, %	40	33	28

Important Performance Parameters

SOFC STACK	Average cell voltage	
	Stack voltage	
	Fuel utilization	
	Cell temperature rise	
	Cell pressure drop	
	Anode leakage fraction	
	Internal Reforming fraction	
	Heat loss	
FUEL PROCESSOR	Steam to carbon ratio	
	Carbon to oxygen ratio	
	Operating temperature	
	Feed Temperature	
	Approach to Equilibrium	
	Pressure drop	
	Heat loss	
HEAT EXCHANGERS & THERMAL MANAGEMENT	Pressure drops	
	Heat losses	
AIR DELIVERY	Compressor Efficiency	
	Compressor pressure ratio	
POWER ELECTRONICS & ELECTRICAL COMPONENTS	Inverter efficiency	
	Motor efficiencies	

Stack Parameter Effects on System Performance

Fuel Processor Effects on System Performance

Schematic of Method for Cost Estimation

Stack Material Cost Estimates

Stack Manufacturing Cost Estimates

Stack Cost: Monte Carlo Simulation Examples

Controls Analysis and Design Process

Control & Sensing Approach

GE Hybrid Power Generation Systems

- GE Fuel Cell Dynamic Component Library
 - Dynamic Component Models
 - Dynamic Subsystem Models
 - Dynamic System Models
 - Control System Design
 - Simulation Trade Studies
- Rapid Prototyping of Control Systems
 - Rapid Test Development
 - Hardware-in-the-Loop Simulations and Tests
 - Automatic Code Generation
- Hardware Implementation and Validation of most Promising Control System Design

This approach allows for low-cost investigation of advanced control techniques which provide significant system cost and performance breakthroughs

GE Hybrid Power Generation Systems

Four start-up strategies have been identified

 Simulation based trade studies are currently being conducted to optimize startup strategy

Control Requirements

- Performance
- Cost
- Reliability
- Safety

Brainstorm Strategies

Optimized Start-up Strategy

Transient Operation

- Transients seen during start-up and shut-down
 - Temperature ramp rates on all components will be maintained
 - Component limitations accounted for explicitly in control system
- Transients seen during normal operation
 - Components maintained isothermally
 - Efficiency traded for system stability

SECA Dynamic System Model - Ramp Results

GE Hybrid Power Generation Systems

- Ramp increase in power from 0% to 75% load in 10 seconds
- SOFC temperature too low resulting in poor performance
 - Anode inlet temperature low
 - Cathode inlet temperature low
- Direct ramping of system seems promising, but further analysis is needed

Preliminary Results

SECA Dynamic System Model - Step Results

GE Hybrid Power Generation Systems

- ~0.5 kW steps
- SOFC temperature control very sensitive
 - Steam-to-carbon
 - Air utilization
- Fuel cell performance low
 - High current density
 - High fuel utilization
- Stepping of power shows some stability benefits

Preliminary Results

Tape Calendering Process

NDE Inspection of Green Tapes

GE Hybrid Power Generation Systems

 X-Ray inspection of three tapes in various stages of processing, the radiographs show indications of higher and lower density regions

NDE Inspection of Sintered Bilayers

Optical Image

X-Ray Image

Ultrasonic Image

- Both X-Ray and ultrasonic imaging are being evaluated for fired bilayers
- Density variations can be observed with both techniques
- Ultrasonic more sensitive of surface features

Footprint Scale-Up

- Effects and issues related to foot-print scale-up are being explored
- 8" diameter cells and interconnects have been fabricated and tested

8"-Cell Stack Performance

Cathode Materials and Microstructure Development

Fuel Concentration and Utilization

GE Hybrid Power Generation Systems

Mass transfer is a major issue for anode-supported SOFCs

$$i_{l} = \frac{-nFD_{T}P_{H2}}{\delta}$$

Anode Microstructure Development

- Stacks tested up to 3000 hours
- Performance degradation (much higher than target) observed
- Potential causes for performance losses being investigated

SIMS Results on 3000-hours Stack

- Chromium builds up at cathode-electrolyte interface
- Chromium is associated with manganese, not with lanthanum
- TEM underway to look at phases that are present

SOFC Operation on Hydrocarbon Fuels

CPOX for Processing Hydrocarbon Fuels

- Fuels: propane, butane, octane, JP-8, and diesel
- Duration: 700 hours to date
- Thermal cycles: 10
- Sulfur tolerance: 1000 ppm dibenzothiophene in JP-8

Pre-Reforming Evaluation

- CPOX as a baseline
- Evaluation of CPOX catalysts under ATR conditions
- Preliminary results indicate feasibility of operating CPOX as ATR

SOFC Operation on Hydrocarbon Containing Fuels

- SECA system concept has been developed
- Current development efforts focus on resolving key technical issues concerning key system components
- Significant technical progress has been achieved in several technical areas