Fuel Cells and the Environment: A Potential Path to Sustainability and the Hydrogen Economy

Edward S. Rubin

Department of Engineering & Public Policy Carnegie Mellon University Pittsburgh, Pennsylvania

Fourth Annual SECA Meeting Seattle, Washington

April 16, 2003

Outline of Talk

- Fuel cells and the "hydrogen economy"
- Environmental benefits and challenges
- The role of carbon sequestration
- A potential path to sustainability

Fuel Cells and the "Hydrogen Economy"

• Advanced fuel cells generating electricity from reactions of hydrogen and oxygen are intimately associated with the concept of a "hydrogen economy"

Why the Interest in Hydrogen?

- Hydrogen as a clean end-use fuel (reducing emissions of conventional pollutants and greenhouse gases)
- Hydrogen as a national security asset (reducing oil imports and associated vulnerabilities)
- Hydrogen for sustainable development (replacing depleted fossil fuel resources over the next century and beyond)
- Hydrogen as "manifest destiny"

Evolution of the World's Primary Fuel Mix

Major Environmental Concerns Driving Interest in Fuel Cells and Hydrogen

Near-term Issues:

- Air pollutants affecting human health
 - Transportation sector (CO, HC, NO_x, Pb)
 - Other sectors (SO₂, NO_x, PM₁₀, Hg)

Longer-term Issue:

- Greenhouse gases affecting global climate
 - CO₂ emissions from fossil fuels
 - Other GHGs from human activities

Hydrogen as a "Zero Emission" Fuel for Pollution Control

- Increasing stringency of automotive emission standards (esp. California ZEV requirements) helped promote substantial recent interest and investments in vehicles using H₂-powered fuel cells
- A wide array of public and private RD&D programs on H₂-powered vehicles (including SECA, FreedomCAR)
- But many tough problems must be solved before fuel cells and H₂ can compete successfully with alternative transportation fuels and prime movers

Challenges of H₂ for Transportation

- Technology for H₂-powered Vehicles
 - Performance
 - Cost
 - Safety
 - Public Acceptance
- Infrastructure for H₂-powered Vehicles
 - Technology
 - Cost
 - Safety
 - Timing
 - Who will pay for it?

Environmental Benefits of Fuel Cells: Reduced Vehicle Emissions

Case 1: Conventional Diesel Engine

Environmental Benefits of Fuel Cells: Reduced Vehicle Emissions

Case 2: Fuel Cell w/ Hydrocarbon Fuel

Environmental Benefits of Fuel Cells: Reduced Vehicle Emissions

C-free "ZEV"

<u>Caution:</u> Life cycle assessments might tell a different story

Case 3: Fuel Cell w/ Hydrogen Fuel

Why the Concern About CO₂?

Projected increases in CO₂ levels drives the climate change issue

Source: IPCC, 1996 E.S.Rubin

The Long-Term Goal of Carbon-Free Energy

- 1992 U.N. Framework Convention on Climate Change called for "stabilization of greenhouse gas concentrations in the atmospheric at a level that would prevent dangerous anthropogenic interference with the climate system"
- This implies a long-term need to drastically reduce CO₂ emissions, no matter what stabilization target is selected!
- This will require major long-term changes in our energy system, with electricity and hydrogen playing critical roles as carbon-free energy carriers

Percentage of U.S. CO₂ Emissions by Energy Source and End-Use Sector

(Based on total CO₂ emissions of 5727 million metric tons in 2000)

Energy Source	End-Use Sectors				
	Residential	Comm'l	Industry	Transport	Total
Petroleum	1.8	0.9	5.6	32.2	40.4
Natural Gas	4.7	3.2	6.7	0.7	15.2
Coal	0.1	0.1	2.1	-	3.2
Electricity	13.5	13.0	15.4	0.1	41.9
Total	20.1	17.1	29.8	33.0	100.0

Source: DOE/IEA, 2002

But Is H₂ Really Carbon-Free?

- Zero CO₂ emissions at the tailpipe or stack does not necessarily mean carbon-free energy
- Must look at how hydrogen is produced, and evaluate all emissions over the full life cycle (fuel cycle)

The Production of Hydrogen

• *The Dream Scenario:* H₂ produced from electrolysis of water using electricity produced from clean renewable energy (solar, wind):

$$H_2O + elec \rightarrow H_2 + \frac{1}{2}O_2$$

• *The Current Reality:* Most H₂ is made by steam reforming of natural gas:

Reform:
$$CH_4 + H_2O \rightarrow 3H_2 + CO$$

Shift: $CO + H_2O \rightarrow H_2 + CO_2$

Result: 5.5 tons CO₂ emitted per ton H₂ produced

Enter Carbon Sequestration

- Until recently, the term "carbon sequestration" referred to the natural uptake of CO₂ by trees and other biomass (terrestrial sequestration)
- Today this term also includes the capture and storage of CO₂ from power plants and other industrial processes
- Carbon capture and storage (CCS) technology potentially can allow fossil fuels to be used with little or no emissions of CO₂ to the atmosphere

Many Ways to Capture CO₂

Carnegie Mellon

Potential Options for CO₂ Storage

- Geologic Sequestration
 - Depleted oil and gas wells
 - Unmineable coal seams
 - Deep saline reservoirs
- Terrestrial Sequestration
- Mineralization
- Ocean Sequestration
- Other Novel Concepts

Carbon Storage Capacity

Storage Option	Worldwide Capacity (Order of Magnitude)		
Deep Reservoirs	100s – 1000s GtC		
Depleted Oil and Gas	100s GtC		
Coal Seams	10s – 100s GtC		
Terrestrial	10s GtC		

Source: Herzog, 2000

One View of the Hydrogen Economy

Another View: Carbon-Free Hydrogen from Coal

How Far-Fetched Is This?

Many of the pieces already exist commercially:

- Gasification of coal and other feedstocks is a commercial technology used extensively in world industry (including power generation applications)
- Hydrogen production today is a well-developed, commercially-proven industry
- CO₂ capture technology also is used commercially today in a variety of process industries
- CO₂ injection and storage in geologic formations has been widely used for enhanced oil recovery and disposal of acid gases; several large-scale sequestration projects are now underway

Current Uses of Hydrogen

Source: IEA, 2001

E.S.Rubin Carnegie Mellon

Existing CO₂ Pipelines for Enhanced Oil Recovery (EOR)

Source: NRDC

Weyburn CO₂ Pipeline & Storage Project

CO₂ Storage with **Enhanced Oil Recovery**

Sources: USDOE; NRDC

Carbon Sequestration R&D

- Goals are to develop and demonstrate improved, lower-cost and effective methods of CO₂ capture and storage
- Major R&D programs underway worldwide, led by both government and industry, e.g.,:
 - U.S. Department of Energy
 - International Energy Agency
 - CO₂ Capture Project
 - Canadian Clean Power Consortium
 - ... and many others

What difference could these efforts make?

The Potential Role of CCS in a Carbon-Constrained World

World Primary Energy w/o CCS

The Potential Role of CCS in a Carbon-Constrained World

World Primary Energy with CCS

Many Issues Yet to be Resolved

- Acceptance of carbon capture and storage as a viable method of CO₂ abatement
- The success of R&D efforts in lowering the costs of carbon capture, fuel cells, and other advanced power generation systems
- Development of infrastructure needed to support a hydrogen-based energy system
- Timing, magnitude and nature of future emission constraints for greenhouse gases

Conclusions

- A future "hydrogen economy" is by no means assured; a host of technical, economic and political challenges remain to be overcome before this could happen
- BUT, if societal concerns about climate change and sustainability become increasingly important, the use of hydrogen could grow in the decades ahead
- In this picture, fuel cells together with carbon sequestration and gasification technology could play a major role in plowing a "zero emissions" path to a sustainable future (ultimately based on cost-effective renewable energy technology)

Envisioning the future: a potential path to sustainability

Bridge to a Sustainable Future

