

Hydrogen from Coal

David Gray and Glen Tomlinson

Mitretek Systems

Presented at the Fourth Annual SECA Meeting

April 15-16, 2003, Seattle WA

Content

- Drivers & Issues
- Current hydrogen from coal technology
- Coproduction of hydrogen and power from coal
- Carbon dioxide implications
- Advanced SOFC configuration for hydrogen and power production from coal
- Comparison with natural gas
- Challenges

Issues & Drivers for Hydrogen

• ISSUES:

- -low volumetric energy content (storage)
- -Infrastructure for Hydrogen Delivery
- -Carbon capture & Sequestration
- -Resources for Mass Production

DRIVERS:

- -energy security
- -petroleum resource depletion
- -climate change & pollution

Hydrogen Storage

1 Cubic Foot Volume

Coal Analysis

- Illinois #6 Old Ben #26 Mine:
- Proximate as-received (wt %)
 - Moisture 11.12
 - Ash 9.7
 - Volatile matter 34.99
 - Fixed carbon 44.19
 - HHV Btu/# 11,666
- Ultimate as-received (wt %)
 - **Moisture 11.12**
 - **Carbon 63.75**
 - Hydrogen 4.5
 - Nitrogen 1.25
 - Chlorine 0.29
 - Sulfur 2.51
 - Ash 9.7
 - **Oxygen (bd) 6.88**

Financial Assumptions

- 25 year plant life
- 67/33 % debt/equity financing
- 15 % return on equity
- 8 % interest, 16 year term
- **3** % inflation (coal de-escalation of 1.5 % per annum below general inflation)
- 16 year DDB depreciation
- **40 % combined Federal and State tax rate**
- 3 year construction, 50 % output in start-up year
- Sequestration of high pressure CO₂ stream costs \$10/ton carbon

Cases 1 and 2: Hydrogen from Coal

Summary of Hydrogen from Coal Cases

	Case 1	Case 2
Carbon Sequestration	NO	YES (87%)
Hydrogen MMSCFD	131	119
Coal T/D (AR)	3000	3000
Efficiency (% HHV)	63.7	59
XS Power MW	20.4	26.9
Power Value (MILS/k Wh)	35.6	53.6
Capital \$MM	367	417
RSP of Hydrogen \$/MMBTU	6.83	8.18

Case 3: Coal to Hydrogen and Power

Capital \$910MM

COE 35.6 Mills/kWh

Hydrogen RSP \$5.42/MMBTU

Efficiency 62.4%

Case 4: Coal to Hydrogen and Power (Sequestration)

Capital \$950MM	H ₂ RSP \$/MMBTU	COE Mills/kWh	Efficiency 56.5%
	5.64	53.6 (Gas CC, sequestration)	
	6.89	46.3 (Coal IGCC, sequestration)	
	8.73	35.6 (Coal IGCC, no sequestration	n

Summary of Coproduction Cases

	CASE 3	CASE 4
Carbon Sequestration	NO	YES (95%)
Hydrogen MMSCFD	149	153
Coal T/D (AR)	6000	6000
Efficiency (%HHV)	62.4	56.5
XS Power MW	475	358
PowerValue (MILS/kWh)	35.6	53.6
Capital \$MM	910	950
RSP of Hydrogen \$/MMBTU	5.42	5.64

CO₂ Implications of Coal to Hydrogen and Power (Case 3)

CO₂ Implications of Coal to Hydrogen and Power (Case 4)

Case 5: SOFC for Power and Hydrogen (Sequestration)

Capital \$1,037 Million

Efficiency 64.5% (HHV)

H ₂ \$/MMBTU 2.79	COE mills/kWh 53.6 Gas CC, sequestration)	
4.61	41.3 (Coal IGCC, sequestration)	
7.34	35.6 (SOFC/sequestration)	

Case 6: SOFC Power/H₂/Membrane (Sequestration)

Capital \$1,019 Million

Efficiency 65.2% (HHV)

H ₂ \$/MMBTU	COE 53.6 Mills/kWh
2.40	53.6 Gas CC, sequestration)
4.24	46.3 (Coal IGCC, sequestration)
5.58	41.0 (SOFC/sequestration)
6.87	35.6 (Coal IGCC, no sequestration)

Summary of Cases using SOFC Systems

	CASE 5	CASE 6
CARBON SEQUESTRATION	YES (90%)	YES (95%)
HYDROGEN MMSCFD	149	150
COAL T/D (AR)	6000	6000
EFFICIENCY (%HHV)	64.5	65.2
XS POWER MW	509	519
POWER VALUE (MILS)	53.6	53.6
CAPITAL \$MM	1,037	1,019
RSP OF HYDROGEN \$/MMBTU	2.79	2.40

Hydrogen Cost vs Natural Gas Price

Challenges

- Hydrogen Production:
 - -carbon capture & sequestration
 - -improved separations & purification
- Delivery & Storage:
 - -infrastructure
 - -volumetric energy density
- Hydrogen Utilization:
 - -fuel cell compactness & costs