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Purpose of This Research

Explore feasibility of smart protective
coatings in fossil systems based on
state-of-the-art alloying and microstructural
approaches to high-temperature corrosion
resistance



Why?

* Adequate resistance to environmental degradation is
a critical material barrier to the operation of fossil

energy systems meeting Vision 21 efficiency and
emission goals

» Reactive species (O,, H,S, H,O, H,, CO, HCI, etc.)
» Slags, salts
+» High temperatures
+» Varying conditions
— operation
— fuels of opportunity



Why?

* Adequate resistance to environmental degradation
IS a critical material barrier to the operation of fossil

energy systems meeting Vision 21 efficiency and
emission goals

* Need breakthrough advances in materials and
materials protection that require new research,
development, synthesis and/or performance
approaches

* Smart coatings offer possibilities for corrosion
protection under aggressive (and changing)
environmental conditions



Smart Protective Coatings For
High-Temperature Corrosion Protection

Smart = correctly sense and respond appropriately

In present context, materials that sense particular
environmental conditions and form protective
barrier layers to provide high-temperature
corrosion protection

Many oxidation-resistant alloys and coatings are
somewhat smart

Want coatings that are multitasking!



There Has Been Some Progress In Developing
More Complex Smart Coatings
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J.R. Nicholls, “Smart Coatings—A Bright Future”,
Materials World, vol. 4, 1996




Project Approach

* Focus on concepts, not synthesis or detailed
corrosion studies

* Explore compositional and microstructural
manipulations and cooperative phenomena that have

not been examined in any detail to date
(cf. Brady, Gleeson, & Wright, JOM , 2000; Nicholls, ibid)

* Pursue structures that can react with the
environment in various ways such that different
protective barrier layers can form depending on the
exposure conditions



Approach (Cont'd.)

* Specifically examine the response of multiphase
alloys and composite structures to various reactive
gases and salts for alumina, chromia, and silica-
formers

* We've started with silicides
+» Potentially good oxidation and/or sulfidation
resistance
» Coatings possible
+» Recent progress in developing multiphase
Mo-Si-B alloys that have high-temperature
oxidation resistance and some fracture toughness



First System Being Explored Is Mo-Si-B

Berczik et al.
Akinc et al.
Kramer et al
Schneibel et al.




There Is A Trade-Off Between
Toughness And Oxidation Behavior

Improve fracture toughness
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Improve oxidation resistance
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(cf. Schneibel et al., MRS Proc., 2002)



Mo-Si-B

Si can provide means to establish protective silica or

borosilicate layers (Meyer et al., Thom et al., Mendiratta et al., Natesan,
Tortorelli et al., Schneibel et al., Petit & Meier, etc.)

Mo sulfidizes slowly (cf. Mrowec, Douglass et al.)
MoS, more stable than Si sulfides

Can we manipulate the phase assemblage of Mo-Si-B so that
effective barrier layers can form in different environments?

» started with oxidation experiments

» explore compositional/microstructural routes to protective
oxide formation

» follow with exposures in oxidizing/sulfidizing atmospheres



Cyclic Oxidation Exposure Conditions
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The Multiphase Alloys Were Clearly Better
With Respect To Cyclic Oxidation Behavior
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Of The Multiphase Compositions,
T1-MoB-MoSi, Performed Significantly Better
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Significant Differences In Surface Reaction
Product Morphologies Were Noted
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“Higher” Alloy Si Content Can Prevent
Subsurface Oxidation

lent Si to form glass layer
-enriched phases can act as Si reservoir/source
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Multiphase Nature of These Systems Present
Opportunities To Improve Corrosion Resistance

* Manipulate microstructural geometric/size effects

» Alter subsurface depletion paths
(e.g., noble alloying additions)

( cf. Brady, Gleeson, & Wright, JOM, 2000)



We Are Examining Optimization Of Oxidation
Resistance Based On Phase Size Effects

» Mo preferentially oxidizes and volatilizes as MoO,, enriching
Mo,Si & T2 in Si

» Eventually, protective SiO,/borosilicate may seal reactive Mo
phase; whether and how fast this occurs depends on
» thickness of continuous Mo phase - minimize d
» Size and distribution of Si-, B-enriched phases
+» temperature



Preliminary Exposures Under Sulfidizing Type
Of Conditions Conducted On Mo-Mo,Si-Mo,SiB,

* H,S-H,-H,O, 800°C, mass continually measured

® Ps, = ~10-° atm, Po, = ~10722 gatm
(severe coal gasification conditions)

Si0, + MoO,

SiO, + MoO,

SiO, + Mo

Mo,Si + Mo

calculated ] 8 10
stability diagram log Ps,




Mo-Mo,Si-Mo,SiB, Showed Very
Good Sulfidation Resistance

800°C, H,S-H,-H,0
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Mo-Mo,Si-Mo, SiB, Showed Very
Good Sulfidation Resistance

800°C, H ,S-H -H,0
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Thin Corrosion Products Were Observed;
Replicated Underlying Alloy Microstructure

H,S-H,-H,0, 800°C, 150 h



Phase Sizes Appeared To Have Little
Effect On Sulfidation Behavior

800°C, H,S-H,-H,0
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Summary

Smart protective coatings may provide one of the
breakthrough areas to overcome material barriers
imposed by the requirements of advanced fossil
energy systems

Multiphase Mo-silicides are being examined as the
first attempt in evaluating smart coating concepts
for high-temperature corrosion resistance in fossil
environments

Mo-rich, B-containing silicides can have adequate
oxidation resistance at high-temperature

Preliminary results show Mo-rich silicides have
excellent sulfidation resistance



