Concepts for Smart Protective High-Temperature Coatings

P.F. Tortorelli, M.P. Brady, I.G. Wright Oak Ridge National Laboratory

> 17th Annual Conference on Fossil Energy Materials April 24, 2003

Purpose of This Research

Explore feasibility of smart protective coatings in fossil systems based on state-of-the-art alloying and microstructural approaches to high-temperature corrosion resistance

Why?

- Adequate resistance to environmental degradation is a critical material barrier to the operation of fossil energy systems meeting Vision 21 efficiency and emission goals
 - Reactive species (O₂, H₂S, H₂O, H₂, CO, HCI, etc.)
 - Slags, salts
 - High temperatures
 - Varying conditions
 - operation
 - fuels of opportunity

Why?

- Adequate resistance to environmental degradation is a critical material barrier to the operation of fossil energy systems meeting Vision 21 efficiency and emission goals
- Need breakthrough advances in materials and materials protection that require new research, development, synthesis and/or performance approaches
- Smart coatings offer possibilities for corrosion protection under aggressive (and changing) environmental conditions

Smart Protective Coatings For High-Temperature Corrosion Protection

- Smart = correctly sense and respond appropriately
- In present context, materials that sense particular environmental conditions and form protective barrier layers to provide high-temperature corrosion protection
- Many oxidation-resistant alloys and coatings are somewhat smart
- Want coatings that are multitasking!

There Has Been Some Progress In Developing More Complex Smart Coatings

J.R. Nicholls, "Smart Coatings—A Bright Future", *Materials World*, vol. 4, 1996

Project Approach

- Focus on concepts, not synthesis or detailed corrosion studies
- Explore compositional and microstructural manipulations and cooperative phenomena that have not been examined in any detail to date (cf. Brady, Gleeson, & Wright, JOM, 2000; Nicholls, *ibid*)
- Pursue structures that can react with the environment in various ways such that different protective barrier layers can form depending on the exposure conditions

Approach (Cont'd.)

 Specifically examine the response of multiphase alloys and composite structures to various reactive gases and salts for alumina, chromia, and silicaformers

- We've started with silicides
 - Potentially good oxidation and/or sulfidation resistance
 - Coatings possible
 - Recent progress in developing multiphase Mo-Si-B alloys that have high-temperature oxidation resistance and some fracture toughness

First System Being Explored Is Mo-Si-B

There Is A Trade-Off Between Toughness And Oxidation Behavior

(cf. Schneibel et al., MRS Proc., 2002)

Mo-Si-B

- Si can provide means to establish protective silica or borosilicate layers (Meyer et al., Thom et al., Mendiratta et al., Natesan, Tortorelli et al., Schneibel et al., Petit & Meier, etc.)
- Mo sulfidizes slowly (cf. Mrowec, Douglass et al.)
- MoS₂ more stable than Si sulfides
- Can we manipulate the phase assemblage of Mo-Si-B so that effective barrier layers can form in different environments?
 - started with oxidation experiments
 - explore compositional/microstructural routes to protective oxide formation
 - follow with exposures in oxidizing/sulfidizing atmospheres

Cyclic Oxidation Exposure Conditions

$$\Delta W_{spec} = \Delta W_{o} - \Delta W_{spall} - \Delta W_{volatile}$$

- Dry air
- 1 h at 1200°C, 10 min out of furnace
- Specimens weighed at 1, 5, 20, 40, 60, 80, 100, 200, 300, 400, 500 h
- Thermal cycling can exacerbate oxidation susceptibility

The Multiphase Alloys Were Clearly Better With Respect To Cyclic Oxidation Behavior

Of The Multiphase Compositions, T1-MoB-MoSi₂ Performed Significantly Better

Significant Differences In Surface Reaction Product Morphologies Were Noted

"Higher" Alloy Si Content Can Prevent Subsurface Oxidation

- Sufficient Si to form glass layer
- Si-enriched phases can act as Si reservoir/source

T1, T2, Mo₃Si

Multiphase Nature of These Systems Present Opportunities To Improve Corrosion Resistance

Manipulate microstructural geometric/size effects

• Alter subsurface depletion paths (e.g., noble alloying additions)

(cf. Brady, Gleeson, & Wright, JOM, 2000)

We Are Examining Optimization Of Oxidation Resistance Based On Phase Size Effects

- Mo preferentially oxidizes and volatilizes as MoO₃, enriching Mo₃Si & T2 in Si
- Eventually, protective SiO₂/borosilicate may seal reactive Mo phase; whether and how fast this occurs depends on
 thickness of continuous Mo phase minimize d
 - size and distribution of Si-, B-enriched phases
 - temperature

Preliminary Exposures Under Sulfidizing Type Of Conditions Conducted On Mo-Mo₃Si-Mo₅SiB₂

- H₂S-H₂-H₂O, 800°C, mass continually measured
- p_{s2} = ~10⁻⁶ atm, p_{O2} = ~10⁻²² atm (severe coal gasification conditions)

Mo-Mo₃Si-Mo₅SiB₂ Showed Very Good Sulfidation Resistance

Mo-Mo₃Si-Mo₅SiB₂ Showed Very Good Sulfidation Resistance

Thin Corrosion Products Were Observed; Replicated Underlying Alloy Microstructure

H₂S-H₂-H₂O, 800°C, 150 h

Phase Sizes Appeared To Have Little Effect On Sulfidation Behavior

Summary

- Smart protective coatings may provide one of the breakthrough areas to overcome material barriers imposed by the requirements of advanced fossil energy systems
- Multiphase Mo-silicides are being examined as the first attempt in evaluating smart coating concepts for high-temperature corrosion resistance in fossil environments
- Mo-rich, B-containing silicides can have adequate oxidation resistance at high-temperature
- Preliminary results show Mo-rich silicides have excellent sulfidation resistance