T. D.Burchell, O. O. Omatete and J. Y. Howe Carbon Materials Technology Group Oak Ridge National Laboratory

Presented at the:

17th Annual Conference on Fossil Energy Materials April 22-24, 2003

Wyndham Baltimore Inner Harbor Hotel Baltimore, Maryland

<u>Overview</u>

- CFCMS Manufacture
- CFCMS Characterization
 - -SEM & TEM
 - -N₂ Adsorption @ 77K
 - -SANS/In-Situ Adsorption Experiment
- Single Gas Adsorption Studies (N₂ and CO₂)
- Dynamic CO₂ Separation Studies
- Summary & Conclusions

MANUFACTURE AND CHARACTERIZATION

Fabrication is by a Slurry Molding Process

- Isotropic pitch-derived carbon fibers are suspended in water
- Powdered phenolic resin added to form bonding phase
- Product-shaped vacuum filter used to create preform
- Preform is dried, cured, and carbonized to convert resin to a carbon and to bond the fibers

CFCMS Synthesis Route

CARBON FIBER COMPOSITE MOLECULAR SIEVE

Monolith Structure

- OPEN STRUCTURE, BUT HIGHLY MICROPOROUS
- RIGID, STRONG, MONOLITHIC
- KINETIC ADVANTAGE DUE TO SMALL FIBER DIAMETER (8-16 μm)
- OVERCOMES PROBLEMS OF GRANULAR ADSORBENTS
- ELECTRICALLY CONDUCTIVE

Microstructure of Activated Carbon Composite: TEM Study

- Graphene layers are distinguishable
- Amorphous structure
- Micropores visible (< 2.0 nm)
- Pore shape is nonspherical
- Micropores are not slit shaped

CFCMS Is Highly Microporous

- Type I isotherm indicative of a microporous carbon
- Large BET surface area,
 can be > 2500 m²/g
- Large micropore volume,
 0.1 1.0 cm³/g
- Mean micropore size, BET area, and MPV controlled through degree of activation

High-Pressure SANS on Activated Carbon Composite with CD₄

- Low pressure filling occurs in micropore region
- High pressure filling extends to mesopore region

SINGLE GAS ADSORPTION STUDIES

N₂ CAPACITY DETERMINATION

N₂ ADSORPTION ISOTHERMS (0-1300 mb) FOR SAMPLE OF CFCMS @ 25% BURN-OFF

CO₂ CAPACITY DETERMINATION

CO₂ ADSORPTION ISOTHERMS (0-1300 mb) FOR SAMPLE OF CFCMS @ 25% BURN-OFF

High Pressure CO₂ Isotherms

DYNAMIC CO₂ SEPARATION STUDIES

Dynamic CO₂ Separation Experiments

- Dynamic CO₂ adsorption/separation experiments were conducted at ambient temperature and pressure with dry gasses
- Flow rate was 2L/min
- Air (380 ppm)
- 3 mol % CO₂ in N₂
- 10 mol % CO₂ in N₂/O₂
- 19 mol % CO₂ in N₂
- Pure CO₂

CFCMS/ESA CELL

Schematic of the CFCMS Cell Set-up

10% CO₂ Adsorption - RGA-80

CFCMS: 24.8% Burn-off Adsorption of CO2 from 10.0 mol % feed

10% CO₂ Adsorption

CFCMS: 24.8% Burn-off Adsorption of CO2 from a 10 mol % feed @ 2l/m

CO₂ adsorbed Vs CO₂ conc. in feed

CFCMS/ESA can be Applied to Numerous Important Gas Separations

- Removal of contaminant and diluent gases (e.g., H₂S and CO₂) from natural gas
- Hydrogen separation and purification
- Removal of CO and CO₂ from reformate and syngas
- Removal of CO₂ from turbine exhaust streams
- Air separation (separation of oxygen and nitrogen)
- Removal of sulfur compound odorants from natural gas

SUMMARY & CONCLUSIONS

- ORNL HAS DEVELOPED A NOVEL MONOLITHIC ADSORBENT CARBON COMPOSITE MATERIAL CALLED CFCMS
- THE MATERIAL HAS AN OPEN STRUCTURE AND IS PERMEABLE, YET IS REASONABLY STRONG
- WHEN ACTIVATED THE CARBON FIBERS BECOME HIGHLY MICROPOROUS
- ADSORPTION IS ASSOCIATED WITH THE MICROPORES
- CFCMS HAS A STRONG AFFINITY FOR CO₂ ADSORPTION OVER N₂
- THE AMOUNT OF CO₂ ADSORBED INCREASES AS THE CO₂ CONCENTRATION INCREASES IN THE FEED GAS
- WE HAVE DEMONSTRATED THE REMOVAL OF CO₂ FROM AIR (~350 PPM), TURBINE EXHAUST (3-9 % CO₂) AND REFORMATE STREAMS (19-30% CO₂)
- CO-ADSORPTION OF WATER WAS OBSERVED TO BE MINIMAL

