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Why Ultra-High Temperature 
Materials?
Vision 21 is about EFFICIENCY:
Service temperature ↑ Efficiency ↑

Nickel-base superalloys: ≤ 1000ºC
ODS ferritic steels:  up to 1400 º C
(but low strength and high stress exponent)

Need ultra-high temperature, high strength materials
Best effort, high risk research
Long lead time from research to production (20 years)

Applications:  sensor protection, heat exchangers, 1st stage vanes
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Ultra-High Temperature Materials
Barriers:  
•Melting point
•Oxidation resistance
•Fracture toughness
•Creep strength

Options:
•Simple crystal structures – expensive (Pt, Ir)
•Complex crystal structures – brittle

Scientific approach:
macro- and microalloying 
Innovative processing to create optimum microstructure
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Why Mo-Si-B Alloys?
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•Melting point ≈2000ºC
•High strength intermetallics
•Equilibrium phases
•Oxidation resistance: MoSi2
•Toughening: metallic Mo phase
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Mo-Si-B alloys are finding interest

Molybdenum-Borosilicide Workshop
Organized by Airforce, Navy, Pratt&Whitney
Annapolis, Maryland, March 11 and 12, 2003

TMS Symposium “Beyond Nickel-Base Superalloys”
Charlotte, NC, March 14-18, 2004
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Strategy for improving the 
mechanical properties 

of Mo-Si-B Intermetallics

Unlikely that intrinsic brittleness of Mo3Si and Mo5SiB2
can be alleviated in the near future

Engineer microstructure to minimize detrimental effect 
of brittle phases

Focus of this talk on:
Microstructure topology and scale
Mechanical properties of α-Mo
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A sucessful microstructure for creep:
nickel-base superalloys

CMSX-4

Single crystal superalloy 

(Kazim Serin, Post-Doc at ORNL)

Continuous γ solid solution matrix
Creep occurs in the γ channels 
between γ’ (Ni3Al) precipitates
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Optimizing Fracture Toughness

•High α-Mo volume fraction

•Continuous α-Mo

•Coarse α-Mo
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Mo-12Si-8.5B (at. %) 
cast&annealed (24h/1600ºC)
≈40 vol. % discontinuous α-Mo
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Crush cast Mo-Si-B and “coat” powder with Mo

Evaporation of Si and/or:    
Mo3Si + 1/2O2 SiO↑ + 3 Mo

Mo5SiB2 + 1/2 O2 SiO ↑ + 2 Mo2B + Mo

Mo-20Si-10B 
powder particle 
after 16 h at 1600°C 
in vacuum
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Hot isostatic pressing of Mo-Si-B powder
in niobium can (4h/1600°C/30ksi)
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HIPed Mo-Si-B with continuous α-Mo matrix:
nominal composition Mo-15Si-10B; 30 vol.% α-Mo.
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Mo-Si-B alloys with continuous α-Mo
HIPed from Si-evaporated Mo-20Si-10B

545-90 µmMedium_Low
4990-180 µmCoarse
3445-90 µmMedium

34≤ 45 µmFine

α-Mo volume 
fraction, %

Powder size 
prior to Si 
semoval

Specimen 
Designation
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Tensile Testing of Buttonhead Specimens
at 3.3×10-3 s-1

Room temperature:
premature fracture at 140 MPa:
Need to eliminate flaws
Mo matrix needs improvement

1200ºC in vacuum:
0.2% yield stress 336 MPa
maximum stress 354 MPa
ductility 1.8%

“Coarse” microstructure
Continuous α-Mo matrix

49 vol. %
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Creep strength

Determine compressive stress-strain curves at a strain rate of 10-5 s-1

Define creep strength as flow stress at 2% plastic strain
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Creep Strength at 1300°C
(10-5 s-1, 2% plastic strain)
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Rigorous Fracture Toughness Testing

•Disc-shaped compact tension specimens

•Fatigue pre-cracking

•Cycling at low stress intensity:

remove bridging in crack wake

•Crack length from elastic compliance

•Determine resistance curve (R-curve)
(Crack-growth resistance KR vs. crack extension ∆a
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Room Temperature 
Fracture Toughness
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What can we do to improve 
toughening efficiency of α-Mo?
High toughening efficiency 

less α-Mo, better oxidation resistance

• α-Mo ligaments < 1 µm

• Microalloying of α-Mo

• Ductilization of α-Mo by spinel particles

(Mike Brady:  chromium)
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Fe-40 at. % Al/TiC:
FeAl fractures usually by cleavage;
Fracture mode of FeAl ligaments 
depends on thickness

Fracture stress of FeAl ligament: 500 MPa
1 dislocation in pile-up:  L=Gb/[πτ(1-ν)]=30 nm
70 dislocations in pile-up: ideal cleavage stress for L=2 µm
Expect ductile fracture for ligaments < 2 µm
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FeAl ligaments show ductile fracture 
for thickness less than 2 µm: 

Size scale important for fracture toughness
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Additions of Ti and Zr improve
the ductility and strength of Mo ( TZM):
Try this approach with Mo-Si-B alloys

Screening tests:

Flexure tests with 
chevron-notched 
specimens
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Zr additons improve 
room temperature fracture toughness,

probably by improving properties of α-Mo
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Ductilization of Mo by adding 
spinel particles (MgAl2O4)

M. P. Brady recently revisited the Scruggs mechanism
(1965) for the ductilization of Cr by spinel particles

Scruggs showed that mechanism works for Mo as well

Consolidate Mo powder (2-8 µm) and 3.4 wt% MgAl2O4
spinel powder (1- 5 µm) in graphite hot-press:
4h/1800°C/20MPa/vacuum

Carry out room temperature flexure tests
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Ductilization of molybdenum
by spinel particles (MgAl2O4)

Optimum particle size and volume fraction?
Collaboration with Bruce Kang, WVU
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Summary and Conclusions

•Processing of Mo-Mo3Si-Mo5SiB2 with continuous α-Mo matrix
•Control of microstructural scale and α-Mo volume fraction
•Limited tensile ductility at 1200C
•Qualitative correlation between microstructure and creep strength
•High room temperature fracture toughness & R-curve behavior
•Zr microalloying additions improve fracture toughness
•Spinel particles improve ductility of Mo

Future work: 
Continue to focus on the mechanical properties of α-Mo phase
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