Mo-Si-B Alloy Development J. H. Schneibel Metals and Ceramics Divison, ORNL R. O. Ritchie, J. J. Kruzic Materials Science Division, LBNL 17th Annual Conference on Fossil Energy Materials Baltimore, MD, April 22-24, 2003. ## Why Ultra-High Temperature Materials? Vision 21 is about **EFFICIENCY**: Service temperature ↑ Efficiency ↑ Nickel-base superalloys: ≤ 1000°C ODS ferritic steels: up to 1400 ° C (but low strength and high stress exponent) Need ultra-high temperature, high strength materials Best effort, high risk research Long lead time from research to production (20 years) Applications: sensor protection, heat exchangers, 1st stage vanes ## **Ultra-High Temperature Materials** #### **Barriers:** - Melting point - Oxidation resistance - Fracture toughness - Creep strength #### **Options:** - Simple crystal structures expensive (Pt, Ir) - Complex crystal structures brittle ### Scientific approach: macro- and microalloying Innovative processing to create optimum microstructure ### Why Mo-Si-B Alloys? ## Mo-Si-B alloys are finding interest Molybdenum-Borosilicide Workshop Organized by Airforce, Navy, Pratt&Whitney Annapolis, Maryland, March 11 and 12, 2003 TMS Symposium "Beyond Nickel-Base Superalloys" Charlotte, NC, March 14-18, 2004 # Strategy for improving the mechanical properties of Mo-Si-B Intermetallics Unlikely that intrinsic brittleness of Mo₃Si and Mo₅SiB₂ can be alleviated in the near future Engineer microstructure to minimize detrimental effect of brittle phases #### Focus of this talk on: Microstructure topology and scale Mechanical properties of α -Mo ## A sucessful microstructure for creep: nickel-base superalloys #### CMSX-4 Single crystal superalloy (Kazim Serin, Post-Doc at ORNL) Continuous γ solid solution matrix Creep occurs in the γ channels between γ ' (Ni₃AI) precipitates ## **Optimizing Fracture Toughness** - •High α-Mo volume fraction - •Continuous α-Mo - •Coarse α-Mo Mo-12Si-8.5B (at. %) cast&annealed (24h/1600°C) ≈40 vol. % discontinuous α-Mo ## Crush cast Mo-Si-B and "coat" powder with Mo Mo-20Si-10B powder particle after 16 h at 1600°C in vacuum Evaporation of Si and/or: $$Mo_3Si + 1/2O_2 \rightarrow SiO^{\uparrow} + 3 Mo$$ $Mo_5SiB_2 + 1/2 O_2 \rightarrow SiO^{\uparrow} + 2 Mo_2B + Mo$ OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY ## Hot isostatic pressing of Mo-Si-B powder in niobium can (4h/1600°C/30ksi) ## HIPed Mo-Si-B with continuous α -Mo matrix: nominal composition Mo-15Si-10B; 30 vol.% α -Mo. ## Mo-Si-B alloys with continuous α-Mo HIPed from Si-evaporated Mo-20Si-10B | Specimen Designation | Powder size prior to Si semoval | α-Mo volume fraction, % | |----------------------|---------------------------------|-------------------------| | Fine | ≤ 45 μ m | 34 | | Medium | 45-90 μm | 34 | | Coarse | 90-180 μ m | 49 | | Medium_Low | 45-90 μm | 5 | ## Tensile Testing of Buttonhead Specimens at 3.3×10⁻³ s⁻¹ #### Room temperature: premature fracture at 140 MPa: Need to eliminate flaws Mo matrix needs improvement #### 1200°C in vacuum: 0.2% yield stress 336 MPa maximum stress 354 MPa ductility 1.8% "Coarse" microstructure Continuous α-Mo matrix 49 vol. % ### Creep strength Determine compressive stress-strain curves at a strain rate of 10⁻⁵ s⁻¹ Define creep strength as flow stress at 2% plastic strain ## Creep Strength at 1300°C (10⁻⁵ s⁻¹, 2% plastic strain) ## **Rigorous Fracture Toughness Testing** - Disc-shaped compact tension specimens - Fatigue pre-cracking - Cycling at low stress intensity: remove bridging in crack wake - Crack length from elastic compliance - •Determine resistance curve (R-curve) (Crack-growth resistance K_R vs. crack extension Δa ## **Room Temperature Fracture Toughness** Mo-12Si-8.5B 40 vol% α -Mo OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY # What can we do to improve toughening efficiency of α -Mo? High toughening efficiency \rightarrow less α -Mo, better oxidation resistance - α-Mo ligaments < 1 μm - Microalloying of α -Mo - Ductilization of α-Mo by spinel particles (Mike Brady: chromium) Fe-40 at. % Al/TiC: FeAl fractures usually by cleavage; Fracture mode of FeAl ligaments depends on thickness Fracture stress of FeAI ligament: 500 MPa 1 dislocation in pile-up: L=Gb/[$\pi\tau$ (1- ν)]=30 nm 70 dislocations in pile-up: ideal cleavage stress for L=2 μ m Expect ductile fracture for ligaments < 2 μ m # FeAl ligaments show ductile fracture for thickness less than 2 μm: Size scale important for fracture toughness ## Additions of Ti and Zr improve the ductility and strength of Mo (→TZM): Try this approach with Mo-Si-B alloys Screening tests: Flexure tests with chevron-notched specimens G=W/A $$K_q = [(E \times G)/(1 - v^2)]^{1/2}$$ # Zr additions improve room temperature fracture toughness, probably by improving properties of α -Mo ## Ductilization of Mo by adding spinel particles (MgAl₂O₄) M. P. Brady recently revisited the Scruggs mechanism (1965) for the ductilization of Cr by spinel particles Scruggs showed that mechanism works for Mo as well Consolidate Mo powder (2-8 μ m) and 3.4 wt% MgAl₂O₄ spinel powder (1- 5 μ m) in graphite hot-press: 4h/1800°C/20MPa/vacuum Carry out room temperature flexure tests ## Ductilization of molybdenum by spinel particles (MgAl₂O₄) Optimum particle size and volume fraction? Collaboration with Bruce Kang, WVU ## **Summary and Conclusions** - •Processing of Mo-Mo₃Si-Mo₅SiB₂ with continuous α-Mo matrix - •Control of microstructural scale and α -Mo volume fraction - Limited tensile ductility at 1200C - Qualitative correlation between microstructure and creep strength - High room temperature fracture toughness & R-curve behavior - •Zr microalloying additions improve fracture toughness - Spinel particles improve ductility of Mo #### **Future work:** Continue to focus on the mechanical properties of α -Mo phase