Mo-Si-B Alloy Development

J. H. Schneibel

Metals and Ceramics Divison, ORNL

R. O. Ritchie, J. J. Kruzic

Materials Science Division, LBNL

17th Annual Conference on Fossil Energy Materials Baltimore, MD, April 22-24, 2003.

Why Ultra-High Temperature Materials?

Vision 21 is about **EFFICIENCY**:
Service temperature ↑ Efficiency ↑

Nickel-base superalloys: ≤ 1000°C ODS ferritic steels: up to 1400 ° C

(but low strength and high stress exponent)

Need ultra-high temperature, high strength materials
Best effort, high risk research
Long lead time from research to production (20 years)

Applications: sensor protection, heat exchangers, 1st stage vanes

Ultra-High Temperature Materials

Barriers:

- Melting point
- Oxidation resistance
- Fracture toughness
- Creep strength

Options:

- Simple crystal structures expensive (Pt, Ir)
- Complex crystal structures brittle

Scientific approach:

macro- and microalloying
Innovative processing to create optimum microstructure

Why Mo-Si-B Alloys?

Mo-Si-B alloys are finding interest

Molybdenum-Borosilicide Workshop
Organized by Airforce, Navy, Pratt&Whitney
Annapolis, Maryland, March 11 and 12, 2003

TMS Symposium "Beyond Nickel-Base Superalloys" Charlotte, NC, March 14-18, 2004

Strategy for improving the mechanical properties of Mo-Si-B Intermetallics

Unlikely that intrinsic brittleness of Mo₃Si and Mo₅SiB₂ can be alleviated in the near future

Engineer microstructure to minimize detrimental effect of brittle phases

Focus of this talk on:

Microstructure topology and scale Mechanical properties of α -Mo

A sucessful microstructure for creep: nickel-base superalloys

CMSX-4

Single crystal superalloy
(Kazim Serin, Post-Doc at ORNL)

Continuous γ solid solution matrix Creep occurs in the γ channels between γ ' (Ni₃AI) precipitates

Optimizing Fracture Toughness

- •High α-Mo volume fraction
- •Continuous α-Mo
- •Coarse α-Mo

Mo-12Si-8.5B (at. %)
cast&annealed (24h/1600°C)
≈40 vol. % discontinuous α-Mo

Crush cast Mo-Si-B and "coat" powder with Mo

Mo-20Si-10B powder particle after 16 h at 1600°C in vacuum

Evaporation of Si and/or:

$$Mo_3Si + 1/2O_2 \rightarrow SiO^{\uparrow} + 3 Mo$$

 $Mo_5SiB_2 + 1/2 O_2 \rightarrow SiO^{\uparrow} + 2 Mo_2B + Mo$

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Hot isostatic pressing of Mo-Si-B powder in niobium can (4h/1600°C/30ksi)

HIPed Mo-Si-B with continuous α -Mo matrix: nominal composition Mo-15Si-10B; 30 vol.% α -Mo.

Mo-Si-B alloys with continuous α-Mo HIPed from Si-evaporated Mo-20Si-10B

Specimen Designation	Powder size prior to Si semoval	α-Mo volume fraction, %
Fine	≤ 45 μ m	34
Medium	45-90 μm	34
Coarse	90-180 μ m	49
Medium_Low	45-90 μm	5

Tensile Testing of Buttonhead Specimens at 3.3×10⁻³ s⁻¹

Room temperature:

premature fracture at 140 MPa: Need to eliminate flaws Mo matrix needs improvement

1200°C in vacuum:

0.2% yield stress 336 MPa maximum stress 354 MPa ductility 1.8%

"Coarse" microstructure Continuous α-Mo matrix 49 vol. %

Creep strength

Determine compressive stress-strain curves at a strain rate of 10⁻⁵ s⁻¹

Define creep strength as flow stress at 2% plastic strain

Creep Strength at 1300°C (10⁻⁵ s⁻¹, 2% plastic strain)

Rigorous Fracture Toughness Testing

- Disc-shaped compact tension specimens
- Fatigue pre-cracking
- Cycling at low stress intensity:
 remove bridging in crack wake
- Crack length from elastic compliance
- •Determine resistance curve (R-curve) (Crack-growth resistance K_R vs. crack extension Δa

Room Temperature Fracture Toughness

Mo-12Si-8.5B 40 vol% α -Mo

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

What can we do to improve toughening efficiency of α -Mo? High toughening efficiency \rightarrow less α -Mo, better oxidation resistance

- α-Mo ligaments < 1 μm
- Microalloying of α -Mo
- Ductilization of α-Mo by spinel particles
 (Mike Brady: chromium)

Fe-40 at. % Al/TiC: FeAl fractures usually by cleavage; Fracture mode of FeAl ligaments depends on thickness

Fracture stress of FeAI ligament: 500 MPa 1 dislocation in pile-up: L=Gb/[$\pi\tau$ (1- ν)]=30 nm 70 dislocations in pile-up: ideal cleavage stress for L=2 μ m Expect ductile fracture for ligaments < 2 μ m

FeAl ligaments show ductile fracture for thickness less than 2 μm: Size scale important for fracture toughness

Additions of Ti and Zr improve the ductility and strength of Mo (→TZM): Try this approach with Mo-Si-B alloys

Screening tests:

Flexure tests with chevron-notched specimens

G=W/A

$$K_q = [(E \times G)/(1 - v^2)]^{1/2}$$

Zr additions improve room temperature fracture toughness, probably by improving properties of α -Mo

Ductilization of Mo by adding spinel particles (MgAl₂O₄)

M. P. Brady recently revisited the Scruggs mechanism (1965) for the ductilization of Cr by spinel particles

Scruggs showed that mechanism works for Mo as well

Consolidate Mo powder (2-8 μ m) and 3.4 wt% MgAl₂O₄ spinel powder (1- 5 μ m) in graphite hot-press: 4h/1800°C/20MPa/vacuum

Carry out room temperature flexure tests

Ductilization of molybdenum by spinel particles (MgAl₂O₄)

Optimum particle size and volume fraction? Collaboration with Bruce Kang, WVU

Summary and Conclusions

- •Processing of Mo-Mo₃Si-Mo₅SiB₂ with continuous α-Mo matrix
- •Control of microstructural scale and α -Mo volume fraction
- Limited tensile ductility at 1200C
- Qualitative correlation between microstructure and creep strength
- High room temperature fracture toughness & R-curve behavior
- •Zr microalloying additions improve fracture toughness
- Spinel particles improve ductility of Mo

Future work:

Continue to focus on the mechanical properties of α -Mo phase

