Strategies for Strengthening Metallic and Intermetallic Alloys at High temperatures

C. T. Liu1, M. Takeyama2, I. G. Wright1
M. P. Brady1, and P. J. Maziasz1

1Oak Ridge National Laboratory
2Tokyo Institute of Technology, Japan

17th Annual Conference on Fossil Energy Materials
Baltimore, MD, April 22-24, 2003
DOE currently sponsors several major power generation initiatives that require HT materials

- **Power Generation Initiatives**
 - Vision 21
 - Clean Coal Technologies
 - FutureGen

- **Successes of these initiatives rely greatly on processing and development of materials with improved high temperature capabilities**
Temperature targets of next-generation structural materials imposed by DOE/ARM Programs

- Ferritic steels (Fe-base): up to 750°C (~1400°F)
- Austenitic steels [(Fe,Ni) base]: up to 850°C (1560°F)
- Multiphase alloy systems: >850°C
 - ODS alloys
 - High temperature intermetallic alloys
Conventional, wrought alloys are marginal for next-generation applications.
Material development

- The temperature requirements imposed by DOE/ARM programs are at the limits of the strength capabilities of current structural alloys.
- It would be prudent from the outset to examine the possibilities for developing new materials with higher-temperature capabilities.
- This paper summarizes the strategies used for strengthening metallic and intermetallic alloys at high temperatures.
Strategies used for strengthening metallic and intermetallic alloys at elevated temperatures

- Solid solution hardening: large atomic size difference between solute and host atoms
- Particle strengthening: Dense precipitation of fine and stable particles
- Slow kinetic processes: high melting point, low vacancy concentration, low solubility limit
- Coarse grain structures
Strengthening of ferritic and austenitic steels

- **Solid solution hardening:** Mo, W
- **Particle strengthening**
 - Carbide particles: complex MC carbides containing Nb, Ti & V elements
 - Intermetallic particles:
 - AB_2 phases (C14, C15 & C36) in ferritic steels
 - AB_3 phases (δ, γ' & γ'') in austenitic steels
- **Slow diffusion processes:** slow precipitation and coarsening kinetics
Many commercial alloys are based on the Cr-Ni-Fe alloy system
Newly published phase diagram of the Ni-Fe-Nb system at 1200°C (2190°F)
Isothermal section of Ni-rich Ni-Fe-Nb system at 1200°C (2190°F)
Intermetallic phases in equilibrium with γ in Ni-Nb-Fe-20Cr system

Two transition peritectiod reactions below are responsible for the phase equilibria change:

1. $\gamma + \mu \rightarrow \text{Cr}_2\text{Nb} + \text{Fe}_2\text{Nb}$
2. $\gamma + \text{Cr}_2\text{Nb} \rightarrow \text{Ni}_3\text{Nb} + \text{Fe}_2\text{Nb}$
The Ni content strongly affects the morphology & alloy phase in the Fe-20Cr-Ni-Nb system at 800°C (1472°F)
The Ni content strongly affects the microstructure & phases in Fe-20Cr-Ni-2Nb at 800°C (1470°F)

Base Alloy (40Ni 2Nb) → Ni$_3$Nb-δ → Fe$_2$Nb-ε (C14)
The Ni content affects the hardness of Laves phase

The hardness decrease is due to the lowering of the amount of C14 precipitates in γ phase
Intermetallic-phase hardening: Summary

- Three stable two-phase fields exist in the Fe-Ni-Nb and Fe-Ni-Cr-Nb alloy systems
 \[\gamma\text{-Ni}_3\text{Nb} \quad \gamma\text{-Fe}_2\text{Nb} \quad \alpha\text{-Fe}_2\text{Nb} \]
- The Ni content strongly affects the amount and morphology of intermetallic-phase precipitates
- Microstructural features greatly affect the hardening behavior of the two-phase alloys
- It is possible to develop new ferritic and austenitic with improved high temperature capabilities by precipitation of intermetallic phases
A sketch to show the strategies for strengthening ferritic and austenitic alloys

Solid solution + Carbides + Intermetallic-phase

Solid Solution Hardening

Solid Solution + Carbide Hardening

Solid solution + carbides + intermetallic-phase Hardening
Innovative Approach:
Strengthening of ferritic steels by nanoclusters at elevated temperatures

- Recent studies at ORNL show that nanoclusters (2-5 nm) are formed in Fe-12Cr-3W-0.4Ti-0.25Y₂O₃ alloy (12YWT) processed by mechanical alloying (MA).
- Surprisingly, these nanoclusters are stable even at 1300°C (2370°F)(=0.87 Tₘ)
- These clusters effectively strengthen the alloys at room and elevated temperatures.
- Creep tests show that the clusters reduce the creep rates at 650-900°C by six orders of magnitude.
These nanoclusters are extremely stable at high temperatures

- Atom probe analyses indicate that the nanoclusters are enriched with O, Ti and Y in 12YWT alloy (Fe-12Cr-3W-0.4Ti-0.25Y$_2$O$_3$)

 $O = 24\%$, $Ti = 20\%$, $Y = 9\%$ (at. %)

- Cluster density: $10^{24}/m^3$

- No appreciable coarsening after creep testing for 14,000 h at 800°C or annealing for 10 h/1300°C
The nanoclusters dramatically improve the creep resistance of the MA ferritic alloy.

- Comparison of the creep rupture properties of 12YWT ferritic alloy with other commercial ferritic alloys.
Future studies of nanoclusters in ferritic steels

- Atomic arrangement
- Interfacial structure
- Formation mechanism
- Unusual thermal stability
- Innovative processing
 (other than mechanical alloying)
Multiphase Intermetallic Alloys for High Temperature Use: Titanium aluminide alloys
In situ lamellar structures can be readily produced in titanium aluminide alloys

- **Microstructure Control Using** α to γ **Phase Transformation**
Titanium aluminide alloys with fine lamellar structures show excellent mechanical properties

- Both yield strength and tensile elongation can be controlled by adjusting lamellar spacing and grain size via heat treatment
Cast turbocharger rotor made from a Titanium aluminide alloy in Japan

Ti-46Al-7Nb-1Cr
Manufacturing processes for wrought TiAl alloy turbine blade

LP Turbine Blade