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Abstract 
 
The Cr-Ta alloy with an eutectic structure has a good combination of high strength and oxidation resistance at elevated 
temperatures up to 1,200°C.  It is an ideal candidate for ultrahigh-temperature applications.  However, the material 
shows low ductility and fracture toughness at room temperature.  An effective way to improve the ductility and fracture 
toughness is to obtain an aligned microstructure of eutectic Cr-based alloys, using a directional-solidification (DS) 
process, in which the feed materials with eutectic compositions are preferred.  In the present work, a quantitative 
technique was employed to assist in monitoring and controlling the composition of the Cr-based alloys throughout the 
processing stages at elevated temperatures.  A colony structure related to the instable liquid/solid interface was observed 
in a DS Cr-Ta sample.  A possible eutectic area was probed in the Cr-Mo-Ta system, which could facilitate the 
development of well-aligned lamellar structures by DS. 
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Introduction 

 
The Cr2X (X = Ti, Hf, Zr, Nb, Ta, etc.) Laves-phase alloys are candidate materials for applications at temperatures greater 
than 1,200°C, because these alloys have good oxidation resistance and strength at elevated temperatures [1-12].  
However, these alloys are very brittle at room (24°C) and moderately high temperatures (approximate 400 to 800°C), 
which prohibits their commercial applications as structural materials.  One of the potential solutions to overcome the 
brittleness of Laves-phase alloys is to fabricate in situ composites reinforced by Laves phases in a relatively ductile 
matrix [13-20].  The presence of a Cr-Cr2Ta eutectic reaction provides a good opportunity for the formation of the Cr 
solid solution alloy reinforced with the Cr2Ta Laves phase [21].  The Cr-Cr2Ta alloy has a high melting point greater 
than 1,700°C, and the Laves phase has an ordered crystal structure so that it shows excellent mechanical properties at 
elevated temperatures.  In addition, the Cr matrix phase exhibits some ductility, which is greater than the Cr2Ta Laves 
phase at room temperature [3, 22], and good oxidation resistance at high temperatures.  The mechanical properties of the 
Cr matrix can be improved by the mechanical treatment and alloying-element additions [22-24].  Thus, the Cr solid 
solution matrix composite reinforced by Laves phases makes the material attractive.  Our previous research showed that 
aligned lamellar structures obtained by directional solidification (DS) using a High-Temperature Optical-Floating-Zone 
Furnace could improve the strength and toughness of the Cr-Cr2Ta in situ composites [25]. 
 
Eutectic compositions of the Cr-based alloys are critical for obtaining well-aligned lamellar structures using DS.  It is 
worth noting that the published data of the eutectic composition of the Cr-Ta binary system range from 9.8 atomic 
percent (at. %) Ta [10] to 13 at. % Ta [19], and molybdenum alloying is thought to be capable of solid-solution hardening 
of the Cr-rich phase [26].  To achieve the desired compositions, proper masses of the raw materials are calculated prior 
to processing.  However, there is a large difference between the melting points of Cr and Ta, and the boiling point of Cr 
is lower than that of Ta.  Thus, the vaporization of chromium during processing, especially at the initial stage, should be 
taken into account.   Moreover, a considerable weight loss due to the Cr evaporation could occur during directional 
solidification, where the molten alloy is exposed to ultrahigh temperatures for long times.  Such fluctuations in the 
compositions of the Cr-based materials would have influence on the final microstructures of the DS materials.  
 

Experimental 
 
High-purity Cr, Ta, and Mo chips were used as charge materials in order to avoid deleterious effects of impurities on the 
microstructures and mechanical properties of the alloys.  The nominal compositions of the alloys studied are shown in 
Table 1.  Unless specified otherwise, the compositions mentioned are in at. % hereafter.  Button-shaped samples of the 
alloy were obtained by arc-melting in argon.  Every sample was inverted and remelted for eight to ten times in order to 
improve the homogeneity of the microstructure and chemical composition of the alloy.  Then cylindrical ingots with a 
length of 60 mm and a diameter of 9 mm were obtained by drop-casting.  Selected samples were further processed by 
directional solidification in a flowing argon atmosphere using a High-Temperature Optical-Floating-Zone Furnace.  
Details of the directional-solidification processing can be found elsewhere [25].  A quantitative technique was employed 
to track the composition deviations during processing [27].  At each processing stage, weight loss was carefully 
measured and tracked for the ingot (Figure 1).  The evaporation of the chromium was assumed to be the only source of 
the weight loss, and the corresponding actual composition was calculated and recorded for tracking purposes, as 
illustrated in Figure 1.  The actual masses of the alloying elements prior to each processing stage except the raw 
materials were calculated by the derived actual composition of the last stage, and then were converted to concentrations 
in atomic percentages to reflect the composition deviations during processing (Figure 1). 



 
 
 
 
 
 
 
 
 

Figure 1 Composition monitoring and tracking during different processing stages. 
 
For a binary Cr-X alloy system, the actual concentration of an alloying element, X, after a certain processing stage was 
calculated by the following equation: 
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W /MX at. % = 100%
W /M +(W - W)/M

×
∆

 (1) 

 
where, XM  and CrM  are the atomic masses of the alloying elements, X and Cr, respectively, XW  and CrW  are the 
weights of X and Cr prior to the processing stage, and W∆  is the weight loss that equals the sum of XW  and CrW  

minus the ingot weight.  The actual composition in a ternary Cr-X-Y alloy system can be calculated in a similar way, as 
shown in Equation 2:   
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where, YM  and YW  are the atomic mass and weight of the ternary alloying element, Y, respectively.  Following the 

processing, the microstructures of the samples were examined using optical microscopy (OM). 
 

Table 1 Nominal compositions of the Cr-Ta and Cr-Ta-Mo alloys (at. %) 
Alloy system Nominal compositions 
Cr-Ta Cr-9.6Ta 

Cr-Ta-Mo 
Cr-9.7Ta-1.0Mo, Cr-9.7Ta-3.0Mo, Cr-9.7Ta-5.0Mo, 
Cr-10.7Ta-5.0Mo, Cr-11.7Ta-3.0Mo, Cr-13.7Ta-1.0Mo 

 
 

Results and discussion 
 
1.  Composition deviations of the Cr-based alloys during processing 
 
The compositions of the Cr-Ta and Cr-Ta-Mo samples throughout various processing stages are calculated by Equations 
1 and 2, and are listed in Table 2.  Note that surplus chromium was added prior to arc-melting to compensate for the Cr 

Initial composition Actual composition Final composition 

Weight loss 

Actual composition

Weight loss Weight loss

Raw materials Bar sample with 
lamellar structures Button ingot Rod ingot 

Arc-melting Drop-casting Directional solidification



evaporation, and the initial Ta and/or Mo concentrations were lower than the nominal values.  It was found that for the 
drop-cast Cr-based alloys, the actual composition could be controlled to a level very close to the nominal value.  
However, a more significant increase in the Ta content occurred in the DS sample (Figure 2), which can be attributed to 
the long-time exposure of the sample to ultrahigh temperatures of about 1,800 ºC during DS processing.   

 
Table 2 Composition deviations during different stages of the processing (at. %) 

Processing stages 
Nominal composition 

Raw materials Arc-melting Drop-casting Directional solidification
Cr-9.6Ta Cr-9.37Ta Cr-9.46Ta Cr-9.49Ta Cr-9.60Ta 
Cr-9.7Ta-1.0Mo Cr-9.58Ta-0.99Mo Cr-9.64Ta-0.99Mo Cr-9.70Ta-1.00Mo -- 
Cr-9.7Ta-3.0Mo Cr-9.60Ta-2.97Mo Cr-9.65Ta-2.99Mo Cr-9.67Ta-2.99Mo -- 
Cr-9.7Ta-5.0Mo Cr-9.60Ta-4.95Mo Cr-9.67Ta-4.99Mo Cr-9.71Ta-5.01Mo -- 
Cr-10.7Ta-5.0Mo Cr-10.63Ta-4.96Mo Cr-10.73Ta-5.00Mo Cr-10.76Ta-5.02Mo -- 
Cr-11.7Ta-3.0Mo Cr-11.56Ta-2.93Mo Cr-11.66Ta-2.99Mo Cr-11.69Ta-3.00Mo -- 
Cr-13.7Ta-1.0Mo Cr-13.55Ta-0.99Mo Cr-13.70Ta-1.00Mo Cr-13.75Ta-1.00Mo -- 

 

 
Figure 2 Cr-Ta samples directionally solidified at a growth speed of 40 mm/h and a rotation rate of 20 rpm. 

 

 

Figure 3 Longitudinal section of the DS Cr-Ta sample shown in Figure 2. 
 
 
 
 



2. The DS microstructure in the binary Cr-Ta alloy 
 
Figure 3 shows the longitudinal section of the DS Cr-9.6 at. %Ta alloy sample.  The colony morphology of the eutectic 
structure indicates the instability of both the Cr-rich matrix and the Cr2Ta phase.  To obtain a well-aligned lamellar 
structure, the solid/liquid interface should be maintained planar and stable during the DS processing, which requires 
proper coupling of the composition of the molten alloy and the growth speed such that the undercooling at the 
solid/liquid interface is at an appropriate low level, thus, it is more feasible to obtain planar eutectic growth in alloys with 
near-eutectic compositions [28].  It is worth noting that the Ta concentration of 9.49 at. % Ta in the DS sample prior to 
DS (Table 2) was significant lower than the eutectic point of 9.7 at. % Ta in the Cr-Ta system [27].  For the DS 
processing employed in the present study, the composition of the molten alloy could be continuously varied during the 
growth due to the evaporation of Cr.  Such a fluctuation on the order of 0.1 at. % Ta (as shown in Table 2) could become 
a serious obstacle to the development of well-aligned lamellar structures.  Thus, a Cr-based alloy designed to be more 
tolerant to the composition deviations would be preferable for DS processing. 
 
3. The eutectic composition of the Cr-Mo-Ta alloys 
 
The eutectic Cr-9.7 at. % Ta alloy [27] was selected as the base composition for alloying with Mo, and various levels of 
Mo were added.  Figure 4 summaries the phase compositions of the drop-cast Cr-Mo-Ta alloys studied, and the typical 
OM microstructures are shown in Figure 5.  It was found that the Mo addition at levels of 3.0 at. % and 5.0 at. % had 
significantly modified the eutectic point of the Cr-9.7 at. % Ta alloy, which led to a large amount of pro-eutectic dendrites 
throughout the microstructure [Figures 5(a) and 5(b)].  However, a fully eutectic structure was obtained in the samples 
with a lower Mo concentration of 1.0 at. %, as shown in Figures 5(c) and 5(d).  A possible eutectic area is outlined in 
Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  Phase composition of the Cr-Mo-Ta alloys studied, the axes are scaled in at. % . 
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Figure 5 Optical micrographs of the drop-cast Cr-Ta-Mo alloys: (a) Cr-9.71 at. % Ta-5.01 at. % Mo; (b) 
Cr-9.67 at. % Ta-2.99 at. % Mo; (c) and (d) Cr-9.70 at. % Ta-1.00 at. % Mo.   

 
Summary 

 
1. A quantitative tracking technique was developed to monitor and control the compositions of Cr-based alloys during 

processing at elevated temperatures.  Evaporation of chromium was assumed to be the only source of the weight 
loss, which was carefully measured at each stage of processing, thus allowing the calculation and tracking of the 
compositions. 

 
2. A colony structure related to the unstable liquid/solid interface was observed in a directionally-solidified Cr-Ta alloy 

with off-eutectic composition.  The optimization of the growth parameters and alloy compositions is undergoing.  
 
3. Ternary alloying with molybdenum was employed to improve the oxidization resistance and mechanical properties 

of the Cr-Ta alloys.  It was found that there exists an eutectic area, which could tolerate the fluctuation in the 
alloy’s composition during processing, and hence, facilitate the development of the lamellar structure in Cr-Mo-Ta 
alloys by directional solidification.   
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