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Mixed ionic/electronic conducting (MIEC) oxides, such as SrFeCo0.5Ox, (La0.6Sr0.4)(Co0.2Fe0.8)O3, and BaCeO3, are a class of 
ceramics that contain ionic and electronic carriers in high enough concentration that both forms of charge conduction are 
exhibited at high level, typically at temperatures in excess of 500°C. Because of their properties, the demand for MIEC 
oxide-based devices has grown considerably. The value of the present-day market is conservatively estimated to be $3 
billion, with particularly high growth rates in automotive systems, environmental control, and energy generation technology 
where the devices are employed primarily as amperometric chemical sensors [1]. Solid oxide fuel cells (SOFCs) represent an 
even larger potential market than that established for chemical sensors. These electrochemical devices convert the chemical 
energy from fossil fuels into electricity in a highly efficient manner and may find application in a number of energy 
generation applications, from auxillary power units in automobiles and trucks to megawatt generators helping to power the 
electrical grid. MIEC oxides are employed in SOFCs as electrodes, carrying out charge separation and charge transfer at the 
electrolyte/electrode interface, and as agents to increase the electrocatalytic activity of the electrodes with respect to fuel 
reformation [2]. If the ionic conductivity of a given MIEC oxide is high enough, it can be employed in electrically driven 
oxygen-ion transport membranes for oxygen gas separation, partial hydrocarbon oxidation, and waste reduction and recovery 
[3]. MIEC oxide-based membrane technology offers the potential to separate oxygen from air with far greater efficiency and 
at one-third lower cost than the cryogenic processing technology used today. And unlike cryo-separation, oxygen transport 
membranes operate at high temperature, making them ideally suited for direct integration with coal gasification plants [4].  

 
Underlying the excitement over the potential of MIEC oxides is the engineering challenge of how to effectively incorporate 
these materials into practical devices. Opportunities to fully exploit the unique properties of these advanced ceramics depend 
in large part on our ability to develop reliable joining techniques. However, because MIEC-based device technology is 
essentially restricted to high temperature operation, only a limited number of joining technologies are applicable. In a review 
of ceramic-to-metal joining technology [5], Greenhut discusses a number of joining techniques, of which two, glass joining 
and active metal brazing, are most suitable for bonding a MIEC oxide to a metallic structural component. Figure 1 illustrates 
an example of this type of MIEC ceramic-to-metal bond in a portable oxygen generator being developed for medical 
application. The device operates nominally at 800°C and is likely to experience numerous thermal cycles over its lifetime, on 
the order of several thousand hours, during which it must remain hermetically sealed, structurally rugged, and chemically 
stable.  

 
While glass bonding is potentially a viable joining solution, the maximum operating temperature that a glass joint may be 
exposed to is limited by the softening point of the glass. At present, high temperature glasses with appropriately matching 
coefficients of thermal expansion are limited to a narrow range of compositions within the borate-doped aluminosilicate 
family. These glasses typically display signs of devitrification within the first few hours of exposure at operating temperature 
[6]. As these glasses begin to crystallize, their carefully engineered thermal expansion properties change significantly, which 
ultimately limits the number of thermal cycles and the rate of cycling at which the joints are capable of surviving [7]. 
 
The second ceramic-to-metal joining technique, active metal brazing, utilizes a filler metal that when heated above its 
liquidus temperature, will flow and fill the gap between the two joining pieces by capillary action. Unlike metal-to-metal 
brazes, this particular family of braze alloys contains one or more reactive metals, often titanium, which will chemically 
reduce the ceramic at the interface with the braze, greatly improving wetting and adherence between the two materials [8,9].  
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 Figure 2 Spallation of a Nioro ABA braze drop from the surface of a (La0.6Sr0.4

has undergone reduction and phase separation. The resulting La2O3 
swells in ambient air causing separation between the braze an
magnification, the braze is fully detached from its original position on
the surface for comparison.  

 
 
 
 

 
Experimental 

 
Copper Oxide-Silver Based Brazing 
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Materials 
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As-received 20 mil thick fecralloy sheet was sheared into 1” square coupons, which were polished on one side to a 10µm 
finish. The samples were flushed with de-ionized water to remove the polishing grit and ultrasonically cleaned in acetone for 
10 minutes, then rinsed with propanol and dried in a stream of warm air. To form the reactive alumina layer, the samples 
were pre-oxidized at 1050°C for 2hrs in static air. The average thickness of the alumina scale formed on the fecralloy in this 
manner was ~0.6µm. 
 
As listed in Table I, eight different braze compositions were formulated by dry mixing the appropriate amounts of silver 
(99.9%, 0.75µm average particle diameter; Alfa Aesar), copper (99%, 2.5µm average particle diameter; Alfa Aesar), and 
titanium hydride powders (-325 mesh, Alfa Aesar). The copper and TiH2 oxidize in-situ as the braze is heated, respectively 
forming CuO and TiO2. For the wetting studies, the mixtures were cold pressed into pellets measuring approximatley 7mm in 
diameter by 10mm thick. To prepare braze pastes for the joining experiments, a liquid binder (BX-18, Ferro Corp.) was 
added to the dry powder mixture in a 1:5 weight ratio and the resulting blend was thoroughly mixed on a three-roll mill. As 
formed, the paste was found to have acceptable thixotropic properties for the joining experiments.  
 

Table I.    Target compositions of the brazes invetigated in this study 

Braze I.D. Ag Content (in mole%) CuO Content (in mole%) TiO2 Content (in mole%) 
Ag 100 0 0 

Ag-½Ti 99.5 0 0.5 

Ag-1Cu 99 1 0 

Ag-1Cu-½Ti 98.5 1 0.5 

Ag-2Cu 98 2 0 

Ag-2Cu-½Ti 97.5 2 0.5 

Ag-4Cu 96 4 0 

Ag-4Cu-½Ti 95.5 4 0.5 

 
 
Testing and Characterization 
Wetting experiments were performed in a static air box furnace furnished with a large quartz window on the front door 
through which the heated specimen could be observed. A high speed video camera equipped with a zoom lens was used to 
record the wetting specimen during an entire heating cycle. Each braze pellet was placed on the polished side of the LSCoF 
pellet or pre-oxidized fecralloy substrates and heated at 30°C/min to 900°C, at which point the heating rate was reduced to 
10°C/min. The furnace continued heating until it reached the first set point, 950°C, where the temperature remained for 
fifteen minutes, then resumed heating. In this way, the contact angle between the braze and substrate was allowed to stabilize 
for measurement at several different soak temperatures, 950°C, 1000°C, 1050°C, and 1100°C, during one heating cycle. 
Using VideumTM software (Winnov, Inc.), select frames from the videotape were converted to computer images, from which 
the wetting angle between the braze and substrate could be measured and correlated with the temperature log for the heating 
run. 
 
Microstructural analysis of the wetting specimens was performed on polished cross-sectioned samples, by optical microscopy 
and by examination with a JEOL JSM-5900LV scanning electron microscope (SEM). The SEM is equipped with an Oxford 
energy dispersive X-ray analysis (EDX) system, which employs a windowless detector for quantitative detection of both light 
and heavy elements. To avoid electrical charging of the samples in the SEM, they were carbon coated and grounded. 
Elemental profiles were recorded across joint interfaces in the line-scan mode. 

 
 

Results and Discussion 
 

Contact angle measurements of the molten Ag-CuO-TiO2 brazes on polished LSCoF are shown as a function of temperature 
in Figure 3. Within a 10 - 20°C difference, melting of the binary silver-copper oxide braze compositions intitiated at the 
temperature predicted by the Ag-CuO phase diagram, indicating that the CuO and Ag are not impeded from reaching 
equilibrium by diffusion or solid state reaction kinetics. The fifteen minute hold time used in taking the sessile drop 
measurements appeared to be long enough for interfacial equilibrium to be established; in all cases the contact angle reached 



its stable value within five minutes. With the exception of the Ag-4 mol% CuO composition, the contact angles between the 
different brazes and the LSCoF surface are essentially invariant with respect to temperature over the 950 – 1100°C range. 
The wetting angle curves appear to fall into two distinct categories, those which exhibit little or no wetting and those which 
wet quite well, suggesting that a minimum concentration of CuO is required for wetting and that this minimum can be 
reduced by the introduction of TiO2 to the braze. The two control compositions, Ag and Ag-0.5 mol% TiO2, display no 
wetting with the ceramic. It is not until at least 4 mol% CuO is added to the binary Ag-CuO braze that sufficient wetting 
takes place, and this only occurs at 1100°C. However, when 0.5 mol% TiO2 is added, the 2 mol% CuO braze wets the LSCoF 
at essentially the same contact angle as the best binary braze and does so at a temperature which is at least 150°C lower. No 
additional improvement in wetting occurs when the CuO content of this ternary braze is doubled. 
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Figure 3 Contact angle of Ag-CuO-TiO2 brazes on (La0.6Sr0.4)(Co0.

hold time at each soak temperature was fifteen minutes.
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Shown in Figures 4(a) – (d) are back scattered electron images of the fou
on the LSCoF substrate: Ag-2Cu, Ag-2Cu-½ Ti, Ag-4Cu, and Ag-4Cu
treated under the conditions described for the in-situ wetting experimen
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by a short band of pure silver. Note in both figures signs of braz
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wetting the LSCoF because of its higher oxide content and therefore low
0
 ( 
°

2Fe0.8)O3 in air as a function of temperature. The 
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hase in the bulk of the braze is pure silver. Fine 
 the silver matrix away from the interface with the 
b) and (d), the effect of the TiO2 addition is readily 
u, there is a thin interfacial zone where the CuO 

the Ag-2Cu braze, the CuO decorates the interface 
ecipitates. An occasional silicate particle on this 
nto the LSCoF powder during milling. The Ag-4Cu 
ze/LSCoF interface which is occasionally disrupted 
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us layer of interfacial CuO improves the wetting of 
rphologies observed in Figure 4 are the direct result 
h brazes will form a single phase liquid. However, 
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in CuO and a majority phase which is CuO-poor. 
 the CuO-rich liquid preferentially migrating to and 

er expected interfacial energy with the MIEC oxide 



substrate. Upon further cooling to the monotectic temperature, 964°C, CuO will begin to precipitate from this liquid, 
nucleating at the interface with LSCoF. As it does so, the silver-rich liquid becomes further enriched with silver. At the 
eutectic temperature, solid CuO and Ag will simultaneously nucleate from the remaining liquid, presumably heterogeneously 
on the surface of the previously formed CuO layer which coats the boundary with LSCoF. The Ag-2Cu braze, on the other 
hand, does not enter a miscibility gap when cooled. Just below 964°C, a small amount of proeutectic CuO precipitates out of 
solution, nucleating heterogeneously at the interface with LSCoF. Upon cooling to the eutectic temperature, solid Ag and 
CuO form simultaneously from the eutectic liquid. 
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 Figure 4 Cross-sectional SEM micrographs o
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As is obvious from Figures 4(b) and (d), the addition 
the braze/LSCoF couple. In both cases, Ag-2Cu-½T
even within the CuO precipitates. However, the sa
respectively, which contain a number of titanium-b
melting eutectic (~919°C). This liquid segregates to 
cobalt-titanium oxide phase and a copper oxide-ric
Unexpectedly, however, the CuO-TiO2 liquid attacks 
between grains, which displays high concentrations o
substrate of the Ag-2Cu-½Ti sample is a nearly conti
oxide band contains Co, Fe, Cu, and Ti in roughly
adjacent to this band have become enriched in lantha
known, e.g. by dissolution or by micro-scale phase se
to the next, is occasionally disrupted by a short ban
sample is even more extreme. Two continuous bands
5µm
f braze/LSCoF interfaces: (a) Ag-2Cu, (b) Ag-Cu-½Ti, (c) Ag-4Cu, and (d) 
n was heated in air at a final soak temperature of 1100°C. 

of 0.5 mol% TiO2 significantly changes the interfacial microstructure of 
i and Ag-4Cu-½Ti, virtually no titanium was found in the bulk braze, 
mples exhibit a large affected zone, approximately 35µm and 50µm 
ased reaction products. As expected, the CuO and TiO2 form a low-
the interface with the LSCoF, reacting with substrate to form an iron-
h phase that contains significant levels of lanthanum and strontium. 
the LSCoF intergranularly, forming a low-melting complex oxide phase 
f copper, titanium, iron, and cobalt. Approximately 15 µm into the oxide 
nuous band of oxide running parallel to the braze/LSCoF interface. This 
 a 2:2:1:1 molar ratio. The EDS data suggests that the LSCoF grains 
num and strontium, although the mechanism by which this occurs is not 
paration. The oxide band, which spans from one layer of LSCoF grains 
d of silver. The formation of reactions zones within the Ag-4Cu-½Ti 
 form which are wider than the one observed in the lower CuO-content 



braze. In addition, a significant amount of silver has infiltrated these gaps that again appear to form via grain boundary 
melting and separation. Evidence of grain separation is apparent from the number of large voids that populate the two bands. 
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5 Contact angle of Ag-CuO-TiO2 brazes on the alumina s
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Figure 7 Examples of a Ag-CuO braze LSCoF/Fecralloy joint (a) prior to and (b) after tensile testing. The 
specimen was prepared using the Ag-4Cu braze and was heated at 5°C/min to 1100°C, soaked at 1100°C 
for ½ hr, and cooled at 5°C/min to room temperature. 

 
 
 

 
Conclusions 

 
Reaction air brazing using Ag-CuO and Ag-CuO-TiO2 brazes was investigated as an alternative means of joining a mixed 
ionic/electronic conducting oxide, (La0.6Sr0.4)(Co0.2Fe0.8)O3, to a structural alloy candidate, fecralloy, for an oxygen generator 
application. Wetting experiments demonstrated that copper oxide significantly improves the wetting behavior of silver on 
both the LSCoF and pre-oxidized fecralloy substrates, but that a minimum concentration is required. This minimum level of 
CuO can be reduced by adding a small amount of TiO2 to the braze, but microstructural analysis indicates that a deleterious 
reaction zone may be formed at the substrate surface, particularly in the case of LSCoF, where evidence of grain boundary 
melting was observed.  In general, it was found in the Ag-CuO brazes that the formation of a nearly continuous CuO layer 
along the interface with either substrate greatly improves the wetting characteristics of the braze. Based on the promising 
results obtained in the wetting experiments, a series of joining experiments have been initiated using the binary RAB brazes.   
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