The Impact of MLC Manufacturing on Fuel Cell Commercialization

Presented at the 2nd Annual SECA Workshop
Arlington, VA
March 29, 2001
Traditional Methods vs. MLC

Traditional Methods
- Electrolyte or electrode supported with subsequent application of additional cell layers
- Multiple firings
- Metal interconnects
- Labor intensive stack assembly

MLC Method
- Co-fired repeat units consisting of anode, cathode, electrolyte and interconnects
- Single firing step
- 3rd generation ceramic interconnects
- Limited stack assembly required
Traditional Methods vs. MLC

Traditional Process

1. Cast Porous Anode → Fire Anode → Screen-Print Electrolyte → Fire Electrolyte → Screen-Print Cathode → Fire Cathode → Assemble Stacks

MLC Process

1. Cast Ceramic Layers → Screen-Print Electrodes → Laminate Stacks → Fire Stacks

 Interconnects
 - Laminate Filled Via Interconnects
 - Form Metal Interconnects
 - Coat Metal Interconnects

Cells
- Fire Anode
- Screen-Print Electrolyte
- Fire Electrolyte
- Screen-Print Cathode
- Fire Cathode
- Assemble Stacks
Advantages of MLC Co-fired Approach

- Process time savings
 - Single firing step
 - Reduced stack assembly

- Performance Gains
 - Intimate electrode contact - low polarization losses & contact resistance between interconnects
 - Improved seals
 - Minimizes thermal mismatch & corrosion

- Established high-volume, low-cost, high-quality production methods
Cost Reduction Roadmap

- Automation, Material Optimization, Performance Improvement
- Current pSOFC Technology
- MLC Production Techniques

Manufacturing Cost ($ / kW)

- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007

10^5
10^3
10^2

Demonstrate Technology
Demonstrate Commercial Viability
Commercialization

Demonstrate Commercial Viability
Buffalo Manufacturing Facility