Solid Oxide Fuel Cell System Development

Nguyen Minh

2nd Solid State Energy Conversion Alliance Workshop
March 29-30, 2001
Arlington, VA
Simplified SOFC System & Components

- Microturbine
- SOFC Stack
- SOFC Fuel Cell
- Turbo-Compressor
- Blowers
- Sensors
- CPOX Fuel Processor
- High-T Heat Exchangers
- Controllers
- Valves

- Gas Turbine
- Air Management
- Fuel Processor
- Thermal Management
- Solid Oxide Fuel Cell Stack
- DC Power
- Process Exhaust
- Turbine Inlet
- Cathode Inlet
- Anode Inlet
- Cathode Exit
- Anode Exit
Heat Transfer/Thermal Management

- Extensive experience with thermal management of complex systems
- Broad spectrum of heat exchanger products
- Thermal management systems for a wide range of operating environments
Turbomachinery

- Expert knowledge in positive displacement and dynamic pumps, compressors, and turbines
- Wide range of turbomachinery products
- Development of turbocompressor for PEMFC systems

RAH-66 Fan

50 kW Turbogenerator

Trident Gas Hydraulic Assembly Turbopump

PEMFC Turbocompressor
Controls and Sensors

- Controls
 - Model-base control and optimization algorithms including Fuel Cell Dynamics Component Library
 - Rapid prototyping
 - Load following control system for PEMFC systems

- Sensors
 - Relative humidity
 - Mass air flow
 - Hydrogen
 - Carbon monoxide
System Development Approach

• Low-cost fabrication processes and materials along with compact, lightweight component designs
 – **SOFC**: Tape calendering fabrication process, stack designs incorporating thin-electrolyte cells and thin-foil metallic interconnects
 – **Fuel processor**: Catalytic partial oxidation (CPOX)

• Component designs based on system requirements and other design methodologies (e.g., design-for manufacturing, design-to-cost)

• Focus on lessons learned from small (50 W to several kW) system operation
SOFC Stack Metrics

- Fabrication and operation of multi-cell stack of various sizes (up to kW size)
- 800°C operation at ambient pressure and up to 3 atm
- Thermal cycling
- Start-up and shut-down
- Power density:
 - 0.6 W / cm² with hydrogen
 - 0.4 W / cm² with syngas from JP-8
CPOX Performance Metrics

- Duration: 700 hours to date
- Thermal cycles: 10
- Sulfur tolerance: 1000 ppm dibenzothiophene in JP-8
- Yield: 70-80% of LHV in JP-8
System Design Methodology

System Requirements

- Propose Conceptual Design
- Assume Components
- Model System

Technology Base

- Design Components
- System Analysis
- Trade Studies

Compare to Requirements
- Identify Gaps

Conceptual System Definition

Technology Development

Technology Gaps

System Definition
Solid Oxide Fuel Cell Battery Charger

Requirements

- 7 kg
- 500 W at 28 VDC
- Operation on logistic fuels (JP and diesel)
System Weight Optimization

- 500 W, 28 VDC output
- Hydrogen utilization of 0.8
- Minimum weight at cell voltage of 0.75 V
CPOX/SOFC Integration - Key Parameters

- Start-up and shut-down procedures
- Range of operating parameters
- Pressure drop
- Thermal management
- Transient characteristics
Integrated CPOX-SOFC Operation

CPOX

- **Input:**
 - JP-8
 - Air

- **Output:*
 - 17.3% H₂
 - 21.0% CO
 - 0.7% CO₂
 - 11.0% H₂O
 - 50.0% N₂

SOFC

Module Operating on CPOX Product at 800°C

- Voltage (V)
 - 0.000
 - 0.050
 - 0.100
 - 0.150
 - 0.200

- Power Density [W/cm²]
 - 0.000
 - 0.050
 - 0.100
 - 0.150
 - 0.200

Demonstration of multicell SOFC operation on JP-8 syngas
System Demonstration

• Demonstration of key component integration
 – Integration of system components, especially CPOX fuel processor and SOFC stack

• Operation characteristics
 – Startup
 – Thermal integration
 – Propane and JP-8 fuels
Concluding Remarks

- Low-cost fabrication processes and materials along with compact, lightweight components developed for SOFC systems
- Demonstration of component integration and operation of small systems
- Near-term activities consistent with SECA plan