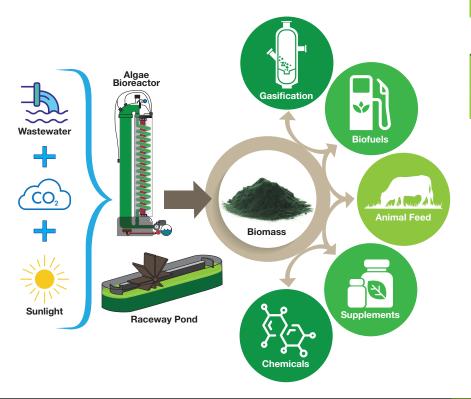


Carbon Utilization (CU) Using Algae to Produce Valued Bioproducts

Developing microalgae and bluegreen algae technologies that utilize waste CO₂



R&D ACTIVITIES

The program is exploring algae technologies such as: sodium bicarbonate microencapsulation, novel photobioreactor designs, dewatering methods and genomics — to improve CO₂ capture, transportation, uptake and conversion into high valued bioproducts.

CHALLENGES

- Efficient capture, transportation, and release of CO₂ into algal media
- Developing energy efficient dewatering techniques
- Discovering/developing algal strains that grow well in the presence of SOx and NOx
- Improving utilization and biomass productivity

KEY ADVANTAGES

BIOMASS PRODUCTION

Algae can grow faster than any terrestrial plant to produce a high volume of biomass

EMISSIONS UTILIZATION

Algae can utilize untreated CO₂ from various sources

WASTEWATER UTILIZATION

Algae allow economic and environmental benefits through wastewater utilization

VALUED PRODUCTS

Biomass can be separated, gasified, and/or processed into a variety of valued products

ACCOMPLISHMENTS

- ✓ Pilot scale photobioreactor achieved 17 months of stable operation utilizing waste CO₂
- Achieved 90% CO₂ capture via lab scale algae photo-bioreactor system using novel dewatering technique, with 99% water recycle

CARBON UTILIZATION CONTACTS

Amishi Kumar DOE/FE Program Manager Amishi.Kumar@hq.doe.gov Joseph Stoffa NETL Technology Manager Joseph.Stoffa@netl.doe.gov