Development of Swelling-Rate-Controllable Particle Gels to Enhance CO₂ Flooding Sweep Efficiency and Storage Efficiency

Award Number: DE-FE0024558

Project Summary:

The overall objective of this project was to develop a novel particle-based gel technology that can be used to enhance carbon dioxide (CO_2) sweep efficiency and thus improve CO_2 storage in mature oilfields. Specifically, novel environment-friendly and temperature-responsive preformed particle gels with particle sizes ranging from nanometer level to a few millimeters were synthesized and evaluated relative to how they can enhance sweep efficiency. Criteria of reservoir selection as well as injection time were optimized for improving flooding efficiency and CO_2 storage.

Initiator

Polymerization

upercritical

CO2

- Principal Investigator: Dr. Baojun Bai
- Project Duration: 6/15/2015 – 3/31/2019
- Performer Location: Rolla, Missouri

Program: Carbon Transport & Storage

Figure 1. Schematic illustration of synthesis of nano-particle gels in supercritical CO₂.

Crosslinke

Additive

Project Outcomes:

During this project, three types of novel preformed particle gels (PPGs) were successfully developed, including 2-acrylomido-2-methyl-propanesulfonic-acid sodium salt (AMPS) -based PPGs, CO₂ responsive PPGs (CR-PPG), and CO₂ resistance PPGs (CRG). The particles sizes were controlled and ranged from nanometer to millimeters, and the swelling time was controlled, ranging from a few hours to three months, depending on the type of conformance problems to be solved. The millimeter-sized PPGs (10 nanometers to a few millimeters) were obtained through bulk gel synthesis, cutting and drying, mechanically crushing and screening process, which were mainly used to solve the conduits, fractures, or fracture-like channels problems. The nano- and micro-sized PPGs were synthesized through either emulsion polymerization or dispersion polymerization process in supercritical CO₂, which were mainly designed to solve the matrix problem for far-wellbore conformance control (Figure 1). Overall, the project provided a series of reliable and cost-effective swelling-rate-controllable particle gel products that can be used to solve the different reservoir conformance problems for CO₂ flooding, which not only aids in improving oil recovery for CO₂ flooding projects but also helps to improve storage efficiency for CO₂ storage projects.