LIFE-CYCLE ANALYSIS (LCA) PERFORMED FOR MIDWEST CARBON STORAGE SCENARIOS DEMONSTRATES NET CO, STORAGE

LCA FACILITATES CLIMATE RESILENCE IN KEY **INDUSTRIAL CORRIDORS IN MIDWEST-NORTHEAST U.S. REGION**

Diagram illustrating the CO₂-EOR process at the Niagaran Reef complex.

Study Objectives

- Quantify greenhouse gases (GHGs) generated for CCS facilities in the MRCI region.
- Assess "cradle to grave" CO₂ equivalent (CO_2e) emissions for carbon capture, transport, and storage operations in relation to the volume of CO₂ stored underground.
- Integrate MRCI-specific factors into analysis of CO₂ sources, geology, and geographic location.

End Product

• GHG life-cycle guidance for developing CCS in the MRCI region in terms of maximizing net CO₂ storage effectiveness. Optimizing decarbonization of these large point sources will facilitate climate resilience in this key industrial corridor of the U.S.

Annual CO₂e Emissions for MRCI Region

Greenhouse gas emissions lifecycle analysis helps illustrate the net benefits of carbon capture and storage.

Life-cycle analysis of net CO₂ storage is needed to assess the most impactful carbon capture and storage (CCS) projects in the twenty states of the Midwest Regional Carbon Initiative (MRCI) to mitigate emissions from CCS operations such as capture, compression, and injection that can offset the CO₂ stored in geological formations.

> Annual oil production and CO₂-associated storage, illustrating the variations in Niagaran Reef CO₂-EOR operations over time.

LCA DEPICTS THE NET BENEFITS **OFCCS**

- not included.
- on existing sources in MRCI), energy for capture, compression from MRĆI data.

Graph illustrating annual trends considering gate-to-gate, downstream, and CO_2 storage net emissions.

Results

- injection, and economies of scale.
- There are many opportunities for CCS in the MRCI region.
- Sources that integrate capture and compression achieve the highest net storage percentages.
- CCS LCA emissions are likely to change over time as operations are optimized to reduce emissions.

PARTNERS

• Eight scenarios were assessed: Ethanol Plant, Natural Gas Power Plant, Direct Air Capture Plant, CO₂ Enhanced Oil Recovery, Hydrogen Plant, Petroleum Refinery, Cement Plant, and Fertilizer/Ammonia Plant.

• The analysis integrated the following specific factors for CCS: geologic storage setting, geographic location, CO_2 emissions details, capture requirements, compression needs, CO_2 transport possibilities, and CO_2 injection. Combustion of fuel products and displaced electricity were

• The analysis included the following key inputs: source size (based requirements, pipeline transport distances, and fugitive emissions. Scenarios were evaluated for low, average, and high source emissions. The life-cycle model includes more than 200 other input parameters

• Historical analyses of net CO₂ stored vs. emissions from the CCS process included the following: capture, compression, transport,

AWARD NUMBER FE0031836

PROJECT BUDGET

CONTACTS

DOE HQ PROGRAM MANAGER **Darin Damiani**

NETL TECHNOLOGY MANAGER William Aljoe

FEDERAL PROJECT MANAGER Dawn Deel

PRINCIPAL INVESTIGATOR Neeraj Gupta

CONTRACT SPECIALIST Maureen Davison

CONTRACTING OFFICER Angela Harshman

FECM RDD&D PRIORITIES

POINT-SOURCE CARBON CAPTURE

