
# Carbon Conversion Program Overview and Wider Thoughts



Joseph Stoffa, PhD
Technology Manager



# National Energy Technology Laboratory (NETL)



# One of 17 U.S. Department of Energy (DOE) national laboratories; producing technological solutions to America's energy challenges.

#### Mission

- Ensuring affordable, abundant and reliable energy that drives a robust economy and national security, while
- Developing technologies to manage carbon across the full life cycle, and
- Enabling environmental sustainability for all Americans.

#### Vision

• To be the nation's premier energy technology laboratory, delivering integrated solutions to enable transformation to a sustainable energy future.





# Mission, Goals, Drivers, Challenges



#### Mission

Advance carbon management through carbon conversion

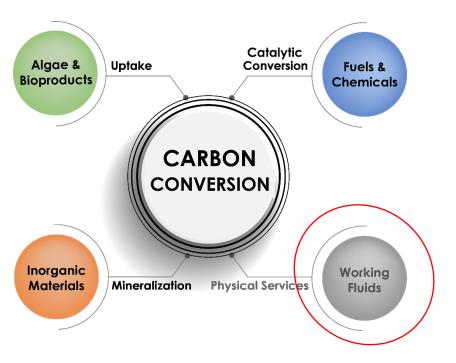
#### Goals

- Support R&D that can convert CO<sub>2</sub> into products
  - Conversion must be environmentally and economically attractive
- Support scaling (demonstration) of technology where appropriate

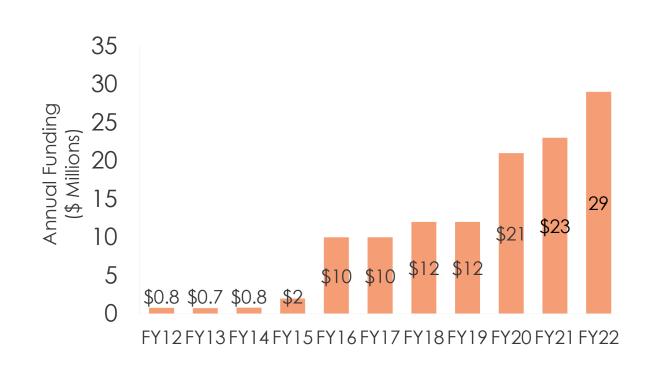
#### **Drivers**

- United States 2020 CO₂ emissions ≈ 4.7 gigatonnes
  - Total global CO<sub>2</sub> emissions in 2021 ≈ 36.3 gigatonnes

#### Challenges


- Scale of CO<sub>2</sub> emissions relative to CO<sub>2</sub> consumption
- Qualifying economic viability and environmental impact requires significant resources
- Electricity prices rarely negative/free
- "Prototypes are easy, production is hard"




# Carbon Conversion Program Structure

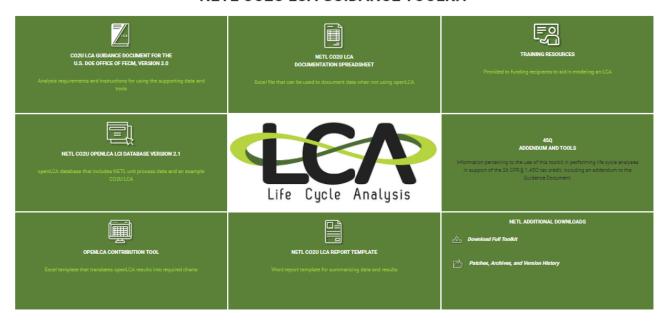


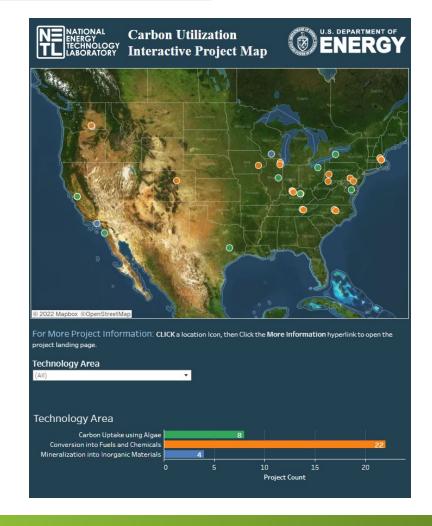
# Carbon Conversion Program R&D Areas



Focus of other programs







# Carbon Conversion Program



# https://netl.doe.gov/carbon-management/carbon-utilization

#### **NETL CO2U LCA GUIDANCE TOOLKIT**







# Carbon Conversion Program Within NETL



#### **R&D** through Research and Innovation Center

- Majority focus on conversion into chemicals
- Activity in catalyst design, microwave reformation, reactive capture, and more

# Life Cycle Analysis through Energy Systems Analysis Team

- Vital to determining economic viability and environmental impact
- Active in Global CO<sub>2</sub> initiative
- Challenges
  - Working to harmonize LCA methodology with other groups
  - Requires collaboration across multiple offices, departments, and external entities

# Techno-Economic Analysis through Energy Process Analysis Team

- All successful technologies must add value
- Sensitivity analysis dependent upon many unknowns
- Not as straightforward to qualify as technical viability



# Carbon Conversion Program Through NETL



#### Extramural research outside of NETL

#### Various Funding Mechanisms Employed

- Field Work Proposals with other national laboratories
- Funding Opportunity Announcements
  - Majority of funding is competitively awarded
- Grant Programs
  - SBIR and STTR for small businesses and institutions of higher education
- Other mechanisms including TCF, ACT, EPSCoR

## **Robust Project Portfolio**

- Thirty-five active projects within the portfolio and growing quickly
  - Mineralization, conversion, and biological uptake

# Grant Program is not exclusive to FECM/NETL efforts!



# Carbon Conversion via Biological Uptake



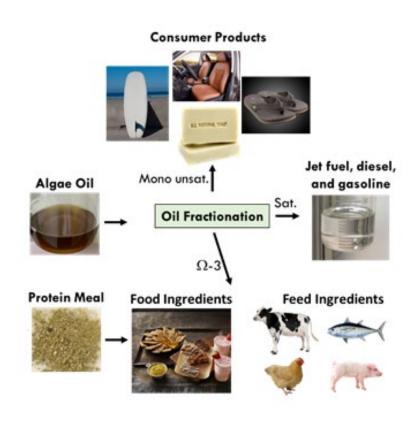
#### A range of products are possible

- Animal feeds
- Nutraceuticals
- Dyes/colorants
- Polymers
- Soil amendments
- Fuels
  - Specific to the mission of DOE EERE's BETO (BioEnergy Technologies Office)

#### Advantages and challenges

- Uses well understood processes (10,000+ years of human agricultural experience)
- Mostly enabled with catalog engineering (uses COTS equipment)
- Biological processes well suited to creating many complex carbon molecules
- Large areas required to achieve gigatonne scale
  - Kinetically slower than higher temp/pressure processes




# Carbon Conversion via Biological Uptake







Pictures courtesy of University of Illinois Urbana-Champaign



Picture courtesy of Global Algae Innovations



Picture courtesy of University of Maryland Center for Environmental Science

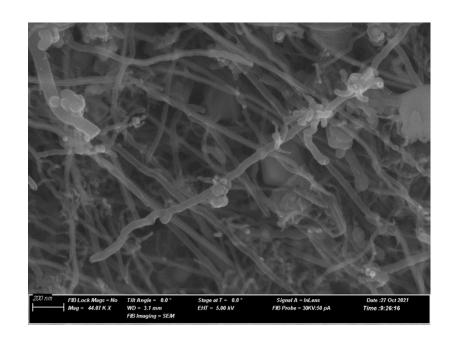


# Carbon Conversion via Thermo/Electro Chemistry



#### A wide range of products are possible

- Fuels
- Polymers
- Solid carbons
- Alcohols
- C2-C4 products (ethane, propane, butane, etc...)
- Methanol and Methane


## Advantages and challenges

- Pathways to gigatonne scale exist
- Almost any molecule can be synthesized
  - Including those currently derived from fossil fuels
- Value of products must outweigh cost of energy inputs
- Breakthroughs may require significant funding (e.g. electrochemistry and catalysts)



# Carbon Conversion via Thermo/Electro Chemistry









Picture courtesy of University of Louisville



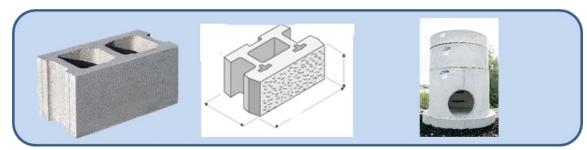
#### Carbon Conversion via Mineralization



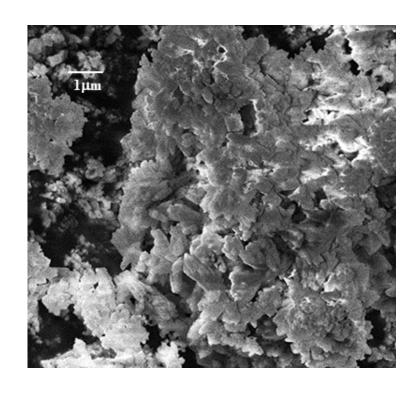
## A limited range of products are possible

- Cured concrete blocks (CMU)
- Synthetic aggregates
- Suboxides
- Other building materials

#### Advantages and challenges


- Can be energetically downhill
- Can apply at gigatonne scale
- Mostly enabled with catalog engineering (uses COTS equipment)
- Can address other waste streams (e.g. produced water or mine tailings)
- Products often have a low specific value (i.e. \$/tonne requires large scale)




# Carbon Conversion via Mineralization











Picture courtesy of University of Wisconsin Madison



# Necessity of TEA/LCA for an Uncertain Future



# Tomorrow will look a lot like today

- Mix of fossil, renewable, and nuclear resources
  - Abundant waste heat integration opportunities
- Industrial electricity prices of \$60 \$80 / MWh

# Inexpensive and Abundant Hydrogen

- \$1/kg Hydrogen
  - Thermochemical conversion of CO<sub>2</sub> into chemicals and plastics
  - Industry widely decarbonized (e.g. steel, cement, fertilizer)

# **Techno-Cornucopian worldview**

- Inexpensive electricity at \$20 \$30 / MWh
- Widescale electrification
- Favorable for electrochemical approaches

#### Other Unknowns

Carbon prices/credits, DAC costs, energy breakthroughs, etc...



# High-Profile Discussion Items



## **Expanding the program**

- Funding for program is increasing quickly
- Interest is increasing even more quickly than funding

## Collaboration with multiple stakeholders

- Necessary due to the scale and breadth of the challenge
- It's not just FECM; lots of other DOE Offices, USG Departments, and NGOs involved

## Program supports capabilities to test technologies at scale

- National Carbon Capture Center (NCCC)
- First USG funding source to support UCLA CarbonBuilt technology
  - One of two winners of prestigious NRG COSIA XPRIZE

## Supporting R&D across multiple pathways

Biological, thermos/electro chemical, mineralization, and reactive capture

## TEA and LCA are vital for an effective program

"It's tough to make predictions, especially about the future"



# Carbon Conversion Contacts and Resources



# Joseph Stoffa

**NETL Technology Manager** 

Joseph.Stoffa@netl.doe.gov

# **Amishi Claros**

**FECM Program Manager** 

Amishi.Claros@hq.doe.gov



https://netl.doe.gov/coal/carbon-utilization

