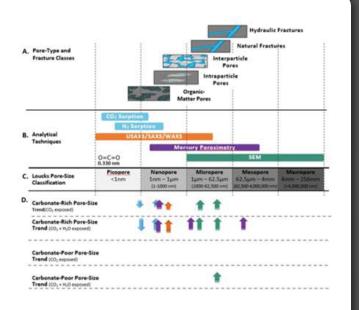
UNDERSTANDING CARBON STORAGE IN SHALES AFTER FLUID FRACTURING INJECTION, A POTENTIAL CARBON MANAGEMENT RESOURCE


Carbon storage advanced research and development.

EXPLORING WAYS TO PERMANENTLY STORE CO₂ IN SHALE AFTER OIL RECOVERY

NETL Research and Innovation Center researchers have shown that shales reacted with hydraulic fracturing fluid, followed by CO₂, undergo carbonate dissolution and barite, gypsum, and carbonate precipitation under in-situ conditions.

These changes lead to etching and pitting of the shale that increases micro-porosity, potentially increasing the ability of the shale to store CO₂.

Understanding the impact on CO₂ transport into the matrix is critical to understanding the potential of CO₂ storage in depleted shale reservoirs.

ANALYSIS OF RESULTS SHOW SHALE COMPOSITION HAS A MAJOR EFFECT ON CO₂-SHALE INTERACTIONS AND IMPACTS THE ABILITY TO STORE CO₂

Synthetically aged (30 days in synthetic fracturing fluid) and non-aged shale:

Non-Aged

- Pores decrease with CO₂ exposure.
- Pores increase with $CO_2 + H_2O$ exposure.

Carbonate content in shales:

Carbonate rich:

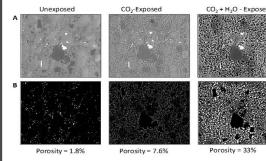
- Micro-scale porosity increases with CO₂ and CO_2/H_2O_2 .
- Nano-scale porosity decreases with CO₂ and CO₂/H₂O.

Aaed

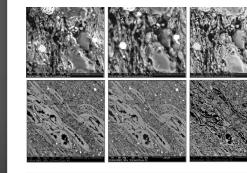
• Pores decrease with CO₂ exposure and $CO_2 + H_2O$ exposure.

Carbonate poor:

 Increase in micro fracture abundance and size for both conditions.

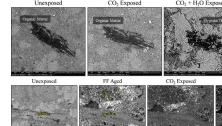

Reactivity of CO₂ and impact on permeability:

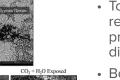
- CO₂ did not promote significant reactivity with the shale if water was not present.
- Porosity and permeability increased in core shale samples after exposure to CO₂-saturated-fluid due to dissolution of carbonate (no new or altered flow paths created; increased microporosity).
- Exposure to CO_2 and CO_2 -saturated-fluid did not alter the mechanical properties of the shale samples.
- No trend that could tie CO₂ or fluid reactivity to physical or chemical properties of the shale formations at the basin scale was observed.


REACTIVITY OF CO₂ WITH UTICA, MARCELLUS, EAGLE FORD, AND **BARNETT SHALES AND THE IMPACT ON PERMEABILITY**

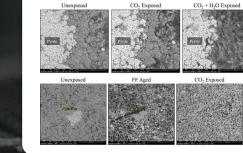
Researchers examined samples from three shale basins across the U.S. (Utica and Marcellus Shales in the Appalachian Basin, Barnett Shale in the Bend Arch-Ft. Worth Basin, and Eagle Ford in the Western Gulf Basin). Images below show conditions prior to exposure, after exposure to pressurized CO₂, and after exposure to pressurized CO₂ (14 days) and water (14 days).

Utica Shale




Marcellus Shale

pitting.


Eagle Ford Shale

barite.

Barnett Shale

- observed.

• Etching and pitting from CO_2 exposure.

• Increase in dissolution and porosity with exposure to CO₂ and H₂O.

B: modified above image where porosity is white and solid space is black.

• Top: silicate rich shale, no etching and pitting.

• Bottom: gray carbonate veins are dissolved, causing etching and

• Top: organic matter reacts in CO_2 and H_2O_2 precipitates gypsum/ dissolves carbonate.

Bottom: hydraulic fracturing fluids etch and pit, precipitate

Carbonate dissolution

 No formation of gypsum (organic matter did not contain sulphur).

AWARD NUMBER FWP-1022403

PROJECT BUDGET

TOTAL FUNDING

CONTACTS

DARIN DAMIANI

MARK MCKOY

ANGELA GOODMAN

FECM RDD&D PRIORITIES

INVEST IN THOUGHTFUL TRANSITION STRATEGIES

