NETL INVENTS NOVEL THIN FILM COMPOSITE MEMBRANE FOR POST-COMBUSTION CO₂ CAPTURE

Superior membrane support plus a superior polymer blend material result in NETL's highperformance membrane.

NEW POLYMERIC MEMBRANES OUTPERFORM COMMERCIAL MEMBRANES

Membranes with extremely high permeance are needed to make membrane technology economically viable.

NETL's answer is a thin film composite membrane for post-combustion carbon capture. It has a demonstrated CO_2 permeance of > 4200 Gas Permeance Units (GPU) and CO_2/N_2 selectivity of >30 under lab conditions, **far outperforming any commercially available polymer membranes**.

The membrane is a new high-permeance polymer support overlaid with an ultra-thin selective layer of a novel rubbery polymer blend.

MEMBRANE SUPPORT DEVELOPMENT

The novel and scalable nanoporous support provides much greater CO₂ permeance (260,000 GPU), surface porosity, and physicochemical stability than commercial polymer porous supports.

Cost of Electricity (COE) Cost Analysis Performed by NETL-RIC for Coal Flue Gas Decarbonization Using Membranes vs. Commercial Amine Absorption

SELECTIVE

NETL-S6 support

PATENTING AND SCALE-UP DEMONSTRATIONS

Path to Commercialization

NETL has submitted a non-provisional U.S. patent application for the membrane support, and another is being prepared for the selective material. The membrane support and selective material both have **high commercial potentials**. NETL has been working to **scale up the membrane for small module demonstrations in different industrial flue gas point sources** like coal-fired power plants, steel mills, and cement plants. NETL plans to establish collaborations with a commercial membrane manufacturer to further scale up and then mature this technology.

PARTNERS

2021 SCIENCE & TECHNOLOGY ACCOMPLISHMENTS

NETL's Membrane Test Unit at NCCC for Coal Flue Gas Decarbonization (Operational)

PROJECT BUDGET

EY21 FUNDING

CONTACTS

HQ PROGRAM MANAGER

TECHNOLOGY MANAGER DAN HANCU

FEDERAL PROJECT MANAGER
PARRISH GALUSKY

PRINCIPAL INVESTIGATORS DAVID HOPKINSON LINGXIANG ZHU

FECM RDD&D PRIORITY

MONSTRATE AND PLOY POINT-SOURCE RBON CAPTURE

