Overview of NEDO’s High-efficiency Clean Coal Technology Development

September 5, 2012

Sadao Wasaka, Dr. Eng.

Executive Director
New Energy and Industrial Technology Development Organization (NEDO)
Japan
Contents

1. About NEDO

2. NEDO Policy on CCT Development

3. Improvement of Coal-fired Power Generation Efficiency

4. Feasibility Study on CCS in Japan

5. Dissemination of High-efficiency Clean Coal Technology
1. About NEDO

- **NEDO**, an independent administrative agency under **METI**, promotes R&D as well as the dissemination of industrial, energy and environmental technologies.

Ministry of Economy, Trade and Industry (METI)

Coordination with policymakers

Promotion of innovation by carrying out R&D Projects

- **Budget**: Approximately ¥124 billion in FY2012
- **Number of personnel**: Approximately 1,000

Comprehensive cooperation

- **Industry**
- **Academia**
- **Public research institutes**

Clean Coal Day 2012, in Tokyo
2. NEDO Policy on CCT Development

Current situation:
- Coal accounts for one fourth of global primary energy consumption and its consumption is expected to increase.
- As a result of continued R&D and effective O&M, Japan has achieved the highest efficiency levels of coal-fired thermal power generation efficiency in the world. However, there are many low-efficiency coal thermal power stations around the world.
- Based on a review of Japan’s Basic Energy Plan in the wake of the Great East Japan Earthquake, coal-fired thermal power generation will likely be a primary power source in the future, as a result of reductions of the dependence on nuclear power and adjustments to supply and demand through the introduction of renewable energy sources.

Policy:
- NEDO promotes R&D on high-efficiency clean coal technology (CCT) that contribute to CO₂ emissions reductions and high-efficiency CO₂ capture technology as part of CCS.
- NEDO aims to utilize Japanese high-efficiency CCT to maintain Japan’s industrial competitiveness as well as promote and disseminate CCT overseas, particularly in developing countries in Asia, in order to stabilize energy supply and demand and contribute to the establishment of a low-carbon society.

Priority activities:
1. Improvement of Coal-fired Power Generation Efficiency
2. Feasibility Study on CCS in Japan
3. Dissemination of High-efficiency Clean Coal Technology
3. Improvement of Coal-fired Power Generation Efficiency

(1) Present status in Japan

Efficiency of USC power plant: approx. 41% (HHV, net)

(2) Power generation technology development roadmap

NEDO is promoting IGCC and IGFC development in order to improve power generation efficiency.

- Integrated Coal Gasification Combined Cycle (IGCC)
- Integrated Coal Gasification Fuel Cell Combined Cycle (IGFC)
- Advanced Ultra Super Critical Steam Condition (A-USC)

Source: Cool Earth - Innovative Energy Technology Program
Coal Energy Application for Gas, Liquid & Electricity (EAGLE)

Photograph of EAGLE Pilot Plant (150 tons/day)

Stage 1 (2002 - 2006)
- Oxygen-blown entrained-flow gasifier was developed.
- Gas cleanup technology was established.

Stage 2 (2007 - 2009)
- CO₂ capture technology (chemical absorption) was developed.
- Coal type diversification (high ash fusion temperature coal) was carried out.
- Trace elements behavior was investigated.

Stage 3 (2010 - 2013)
- Development of CO₂ capture technology (physical absorption)
- Survey of innovative CO₂ capture technology

Clean Coal Day 2012, in Tokyo
EAGLE Stage 3: Survey of innovative CO₂ capture technology
- Development of CO₂ capture technology (physical absorption) -

A survey on innovative CO₂ capture technology is being carried out in order to develop optimal CCS technology to be used in combination with higher pressure systems in next generation IGCC. The EAGLE pilot plant is being utilized to conduct an oxygen-blown entrained-flow gasifier, CCS test using mainly physical absorption technology.

CO₂ separation facilities (physical absorption, newly installed)

CO₂ separation facilities (chemical absorption)

Clean Coal Day 2012, in Tokyo
OSAKI COOLGEN PROJECT

Location: Osaki, Hiroshima
Capacity: 167 MW
Construction period: 2012 - 2016
IGCC verification tests will commence from March 2017
4. Feasibility study on CCS in Japan

Feasibility study on total system from power generation to CCS

Coal gasification / power generation → Capture → Transport → Storage

Feasibility study

(1) CO₂ separation and capture system
(2) CO₂ transport system
(3) CO₂ storage system and review of the potential of CO₂ storage
(4) Review on a total system from power generation to CO₂ storage
(5) Total system implemented at a specified site

Clean Coal Day 2012, in Tokyo
CO₂ storage sites are located in coastal waters. CO₂ storage sites and large-scale CO₂ emission sites such as coal-fired power stations are shown below.

Based on the interim FS results, generating costs would increase by 40% in the case of direct storage and by 70% in the case of marine transport.
5. Dissemination of High-efficiency Clean Coal Technology

As Japan has achieved the world’s highest efficiency levels for coal-fired thermal power generation technology, project feasibility studies are currently being conducted on high-efficiency CCT, such as USC and IGCC in order to disseminate the technology worldwide and reduce global CO₂ emissions.

Feasibility studies on the following projects:

- USC, USC + CCS
- IGCC, IGCC + CCS
- Coal gasification (SNG, H₂, Clean synthetic fuel, etc.)
- Upgrading or drying of low rank coal
- Operation know-how (Combustion simulation, etc.)

International comparison of fossil fuel power generation efficiency (ECOFYS) (2010)

Clean Coal Day 2012, in Tokyo
Isogo thermal power plant: maximum output - 600 MW x 2,
- New No. 1: 25 MPa x 600°C/610°C, operation started in 2002
- New No. 2: 25 MPa x 600°C/620°C, operation started in 2009
High-efficiency Clean Coal Technology in Japan

IGCC Plant

Nakoso IGCC demonstration plant
250 MW operation started in 2007
NEDO Project Formation Research on High-efficiency CCT in 2011 - 2012

★ 2011: Advanced operation know-how using coal-fired boiler simulation in China
★ 2011: IGCC project in Lang Fang, China
★ 2012: Advanced operation know-how using low rank coal-fired boiler simulation in China

★ 2011: Clean synthetic fuel using coal project in Mongolia

★ 2011-2012: High-efficiency coal power plant (USC) in Poland

★ 2012: High-efficiency coal power plant (USC) in Bosnia and Herzegovina

★ 2011: High efficiency coal power plant (USC) and CCS in Bulgaria

★ 2012: Upgraded brown coal (UBC) and high-efficiency coal power plant (USC) in India

★ 2012: Co-firing domestic anthracite and imported coal at a high-efficiency coal power plant in Vietnam

★ 2011: IGCC project in Indonesia
★ 2011: Substitute coking coal project using low rank coal in Indonesia
★ 2012: Low rank coal power/steam tube drying system
★ 2012: Circulation fluidized bed power plant in Indonesia

★ 2012: HECA IGCC project (additional FS) in USA

★ 2012: CCS and turbine renewable project in Taiwan

★ 2012: CCS and turbine renewable project in Taiwan

★ 2012: Hydrogen energy supply chain using Victorian brown coal in Australia
★ 2012: Oxy-fuel combustion power plant (USC) in Australia

Clean Coal Day 2012, in Tokyo
The results of the FS show that one high-efficiency USC unit of 500 MW class would be much more suitable as efficiency would increase by 6% (32% → 38%) and construction costs would be the same compared to construction plans for two subcritical 225 MW units.
State-of-the-art gasification technology accelerates the establishment of coal-based low carbon societies.
Thank you!

Clean Coal Day 2012, in Tokyo