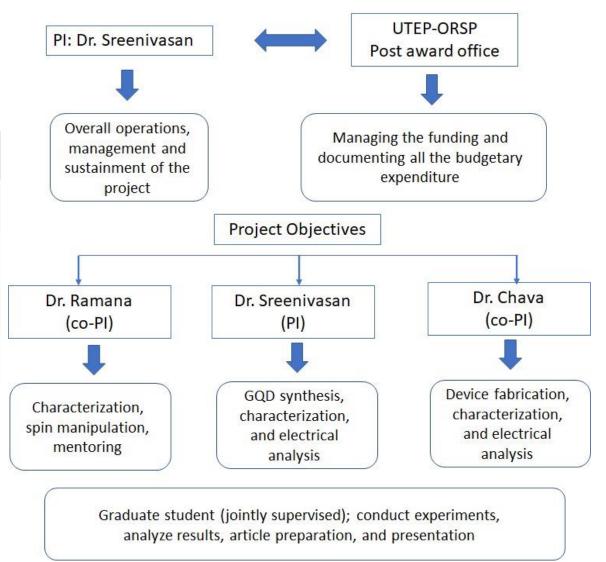


ULTRA-LOW DISORDER GRAPHENE QUANTUM DOT-BASED SPIN QUBITS FOR CYBER SECURE FOSSIL ENERGY INFRASTRUCTURE

Project # DE-FE0031908

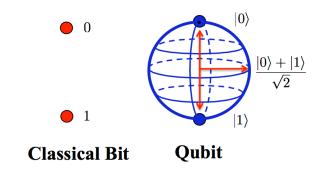
October 29, 2020


Sreeprasad T. Sreenivasan (PI)

Department of Chemistry & Biochemistry
The University of Texas at El Paso

Project Team, Management & Structure

S. No.	Name	Role	UTEP Affiliation
1	Dr. Sreeprasad T. Sreenivasan	PI	Asst. Professor, Chemistry
2	Dr. Ramana Chintalapalle	Co-PI	Professor, Mechanical Engineering
3	Dr. Venkata Surya N. Chava	Co-PI/Postdoc	Postdoc, Chemistry
4	Aruna N. Nair	Research Assistant	Graduate student, Chemistry



Technical Background & Motivation

Quantum Information Processing (QIP) and Quantum bits (qubits)

https://www.bbvaopenmind.com/en/technology/digital-world/towards-the-quantum-computer-qubits-and-qudits/

Physical Implementation of Qubits

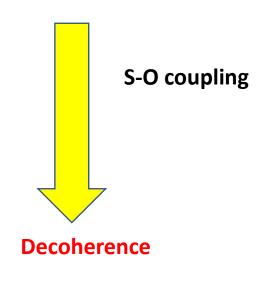
- Atoms, ions, molecules
- Electronic and nuclear magnetic moments
- Charges in semiconductor quantum dots
- Charges and fluxes in superconducting circuits
- Spin

Nature Physics, 3(3), 192-196 (2007)

https://physicsworld.com/a/quantum-communications-boosted-by-solid-memory-devices/

DiVincenzo criteria

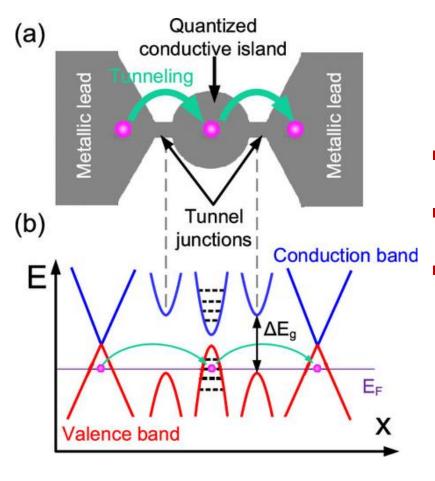
- 1. Long coherence time
- 2. Efficient initialization
- 3. Scalable
- 4. Readout
- 5. Universal quantum gates


Progress of Physics, 48(9-11), 771-783. (2000)

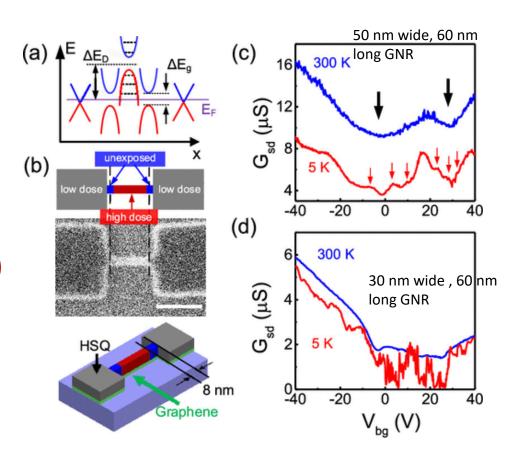
GQDs for Spin Qubits

Coherence time depends on spin-orbit and hyperfine interactions in the material

Ш	IV	\mathbf{V}	VI
5 B	6 C	⁷ N	8 O
10 (3) 20% 11 (3/2) 80%	12 (0) 99% 13 (1/2) 1%	14 (1) 99.6% 15 (1/2) 0.4%	16 (0) 99.76% 17 (5/2) 0.04% 18 (0) 0.20%
13 Al	¹⁴ Si	15 P	16 S
27 (5/2) 100%	28 (0) 92% 29 (1/2) 5% 30 (0) 3%	31 (1/2) 100%	32 (0) 95% 33 (3/2) 1% 34 (0) 4%
³¹ Ga	³² Ge	33 As	34 Se
69 (3/2) 60% 71 (3/2) 40%	72 (0) 27% 73 (9/2) 8% 74 (0) 36%	75 (3/2) 100%	77 (1/2) 8% 78 (0) 24% 80 (0) 50% 82 (0) 9%
⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	⁵² Te
113 (9/2) 5% 115 (9/2) 95%	118 (0) 24% 119 (1/2) 9% 120 (0) 33%	121 (5/2) 57% 123 (7/2) 43%	125 (1/2) 7% 126 (0) 19% 128 (0) 32% 130 (0) 34%


Advantages of Graphene:

- 1. Very low nuclear spin
- 2. Weak spin-orbit coupling


Nature Physics 3.3 (2007): 192-196.

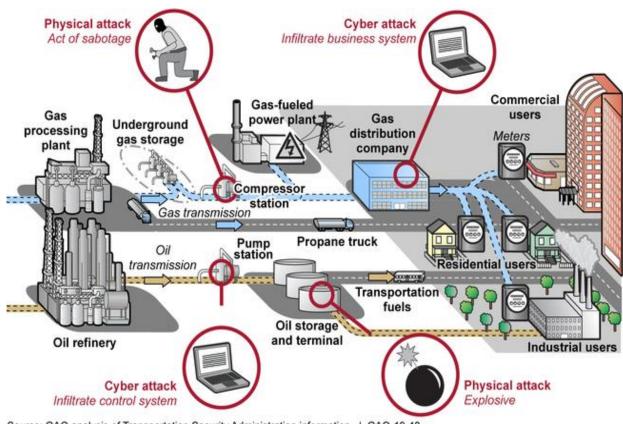
Quantum Dots in Graphene

- **Fabrication residues**
- Substrate defects
 - **Edge effects (disorder)**

ACS nano 13.7 (2019): 7502-7507.

Overarching Goals

- 1. Minimizing the defects in GQDs to realize high fidelity and reliable qubits
- 2. Deciphering the effects of disorder, defects, and noise


Significance of the Proposed Work

The project aims to employ ultra-low disorder graphene nanoribbons for GQD-based spin qubit applications

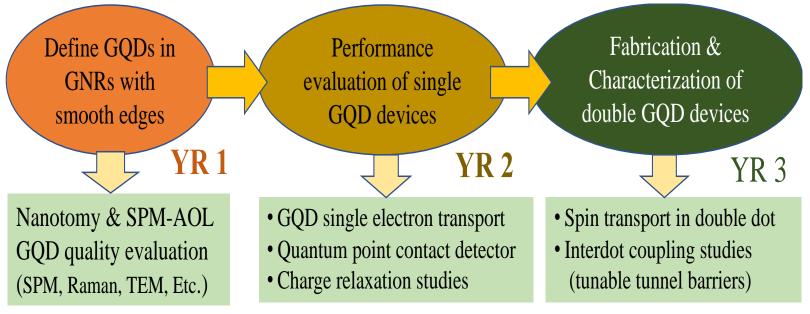
- ❖ Better understanding of the qubit structure-function relationship
- Lead to high-quality qubits with superior coherence times for QIP
- A potentially scalable QIP device platform
- Understanding processing/technological limitations that can be adapted for other qubits.

Relevance to Fossil Energy

- ☐ Quantum computing: Energy
 - system optimization
- **Quantum communication:** Long
 - distance secured communication

Source: GAO analysis of Transportation Security Administration information. | GAO-19-48

https://www.gao.gov/products/GAO-19-48#summary



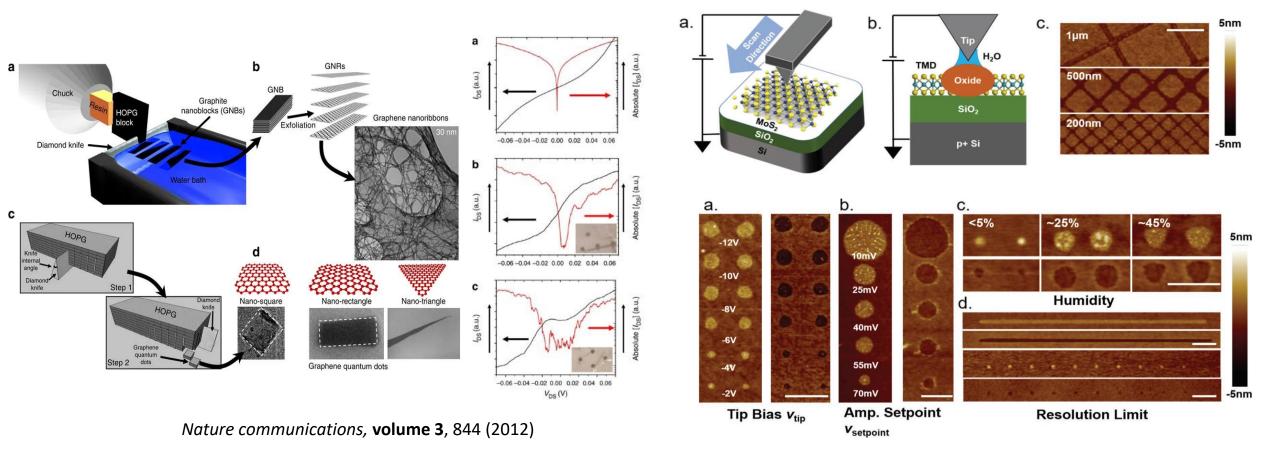
Project Objectives

Objective 1: Define GQDs on GNR with ultralow local defects

Objective 2: Low-temperature characterization of quantum transport and spin relaxation times in GQDs

Objective 3: Develop double GQD-based qubit platform and characterize coupling effects

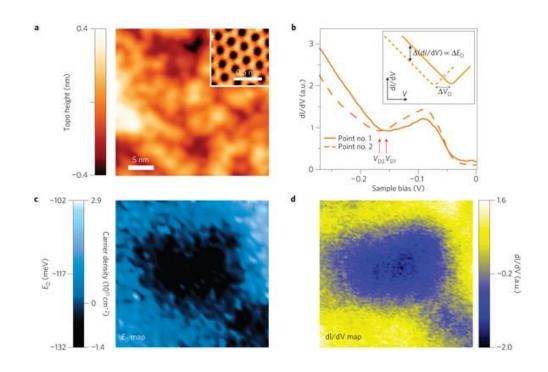
Outline of the overall effort of the proposed project



Proposed Technical Tasks

- Technical task 1. Preparation of GNRs with prescribed width and smooth edges
 - **Subtask 1.1** Preparing baseline GNRs using EBL
 - **Subtask 1.2** Nanotomy-based preparation of GNRs with comparatively smooth edges
 - **Subtask 1.3** Evaluation of GNR quality, edge roughness, and local disorder
- Technical task 2. Device fabrication and characterization of a single-electron transistor
 - **Subtask 2.1** Device fabrication
 - **Subtask 2.2** Device Characterization
 - **Subtask 2.3** Define tunnel barriers in GNR through SPM-AOL and investigate transport
- Technical task 3. Characterization of GQD charge stability and spin relaxation
 - **Subtask 3.1**: Investigate the effect of disorder on GQD charge stability
 - **Subtask 3.2** Charge-relaxation studies
- Technical task 4. Fabrication and testing of double GQD spin qubit system

Technical task 1: GNR Fabrication: Nanotomy and SPM Lithography

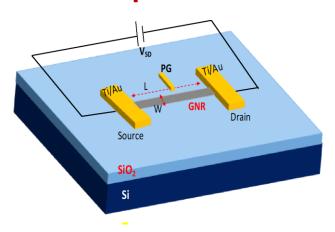


Adv. Mater. 2019, 31, 1900136

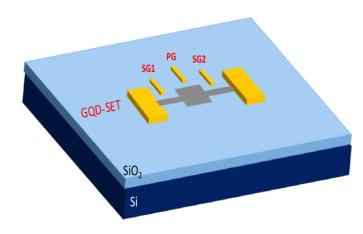
Scanning Tunneling Microscopy (STM)

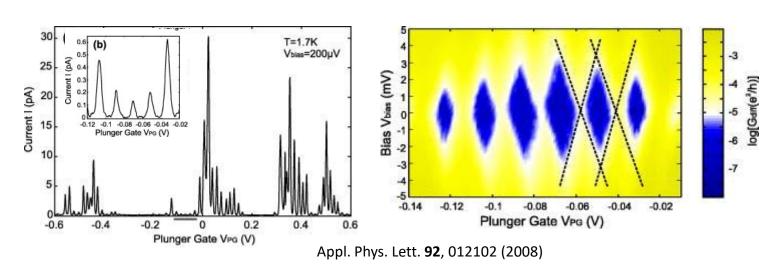
 \triangleright Identifying E_D at each point. Charge puddles can be mapped by measuring the tunnel spectrum (dI/dV vs bias)

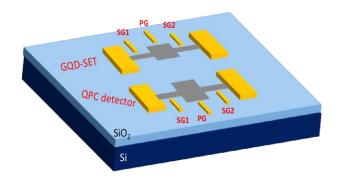
Nature Phys. **5**, 722 (2009)

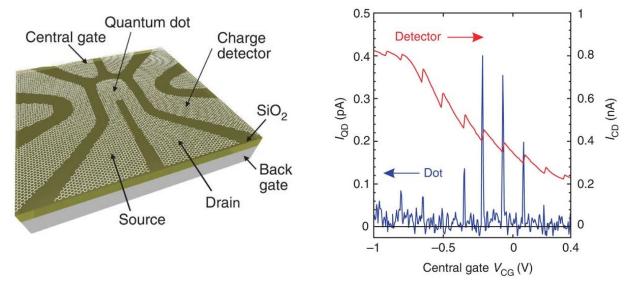


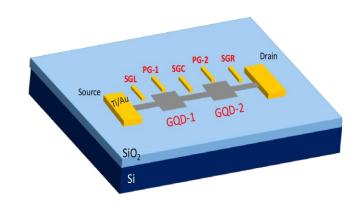
Applied Physics Letters 95.24 (2009): 243502.

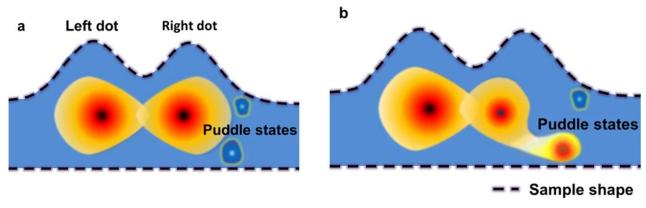

Technical tasks 2-4: Proposed GQD-based SET and QPC Device Structure


1. Electrical transport studies on GNR devices


2. Characterization of SET

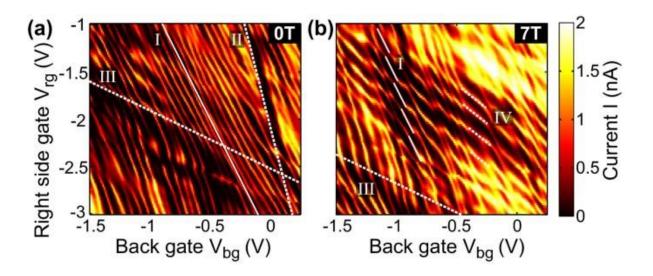



3. Characterization of SET using QPC

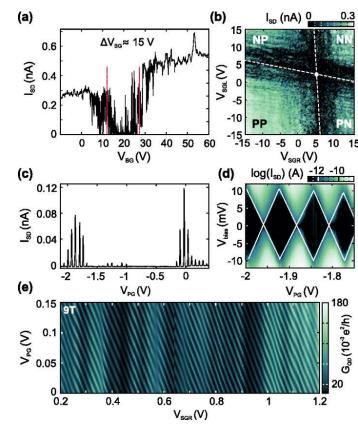


Nature communications volume 4, 1753 (2013)

4. Characterization of Double Quantum Dots


https://www.nature.com/articles/srep03175#Fig5

Stability of Quantum Dot Behavior


Etched graphene quantum dots on hexagonal boron nitride

Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field

Under magnetic field, new features (hexagonal)
 appear that are related to disorder

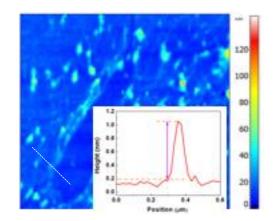
Nanoscale research letters, 6(1), 253 (2011).

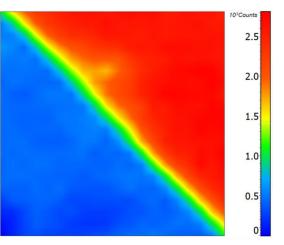
✓ Stable single-quantum dot behavior under magnetic field

Applied Physics Letters, 103(7), 073113 (2013)

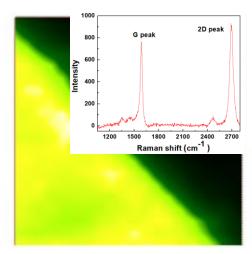
Characterization Technique	Property Measured	
Scanning Probe Microscopy (SPM)	Graphene layer thickness and roughness, Edge roughness of the fabricated (EBL and our hybrid approach) tunnel barrier constrictions and GQD structures	
Raman spectroscopy	Graphene layer quality (defect density)	
Transmission Electron Microscopy	Edge roughness and structure	
Scanning Tunneling Microscopy	Local Density of states (LDOS)	
Room temperature current-voltage measurements	GNR electrical transport gap	
Current-voltage measurements at liquid He temperatures (in dilution refrigerator)	GQD Coulomb blockade transport, tunnel barrier resistance	
Current measurements in QPC	Charge detection sensitivity in response to electron transport through nearby GQD device	
Pulsed gate spectroscopy	Spin relaxation time	
Current voltage measurement of double GQD	Tunnel current transport between adjacent dots and tunable coupling	

Project Status: Material Synthesis and Characterization

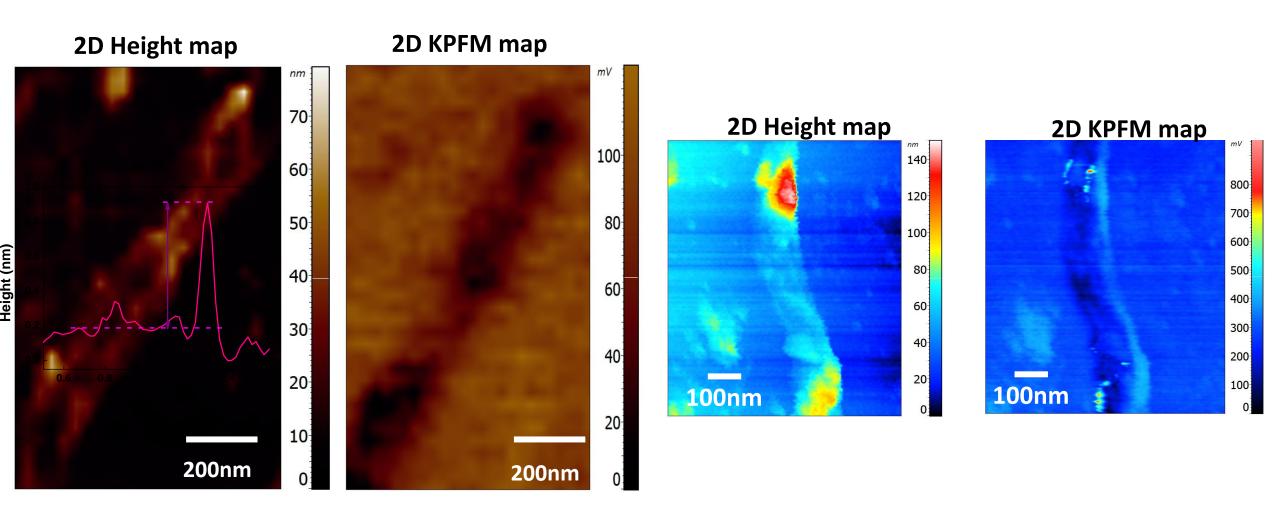

Initiated synthesis and optimization of process parameters



Two zone CVD furnace



Integrated setup for SPM and Raman characterization



G peak

PROGRESS: GNR Synthesis and SPM-AOL

Acknowledgments

- Drs. Adam Payne and Robie Lewis (Project Manager, DOE)
- Functional Quantum Materials Laboratory (FQML), UTEP
- Office of Research and Sponsored Projects (ORSP), UTEP

Thank You!

