FOA 2193 Joint Project Kickoff Meeting

High-Accuracy and High-Stability Fiber-Optic Temperature Sensors for Coal Fired Advanced Energy Systems

PI: **Ming Han** *Electrical and Computer Engineering Michigan State University*

> PM: Barbara A. Carney NETL

> > October 21, 2020

Research Goal

Develop a temperature sensor system that can operate at a temperature level above **1000** °C with accuracy and long-term stability comparable to the sensors of low-temperature versions.

- Using "gas" as the sensing element
- A sensing mechanism unaffected by the structural changes of the sensor head

Temperature control in advanced coal-fired energy systems

Fluidic Bed Combustion Ultra-Supercritical (USC) Steam Cycles **Coal Gasification** Gas Stream Cleanup/Component Separati COB collecto preheate Petroleum Coke/Resid Steam Turbine Generato recycle exhaus Aarketable Solid By-Product oreheated ai luidizing air https://www.britannica.com/ https://newenergyandfuel.com/ https://www.netl.doe.gov/

- Operation at extreme temperature levels (> 700 °C) for improved efficiency and reduced emission of green-house gases
- Temperature control critical for sustained operation at optimal conditions, e.g. for USC
 Annual average increase of 2 °C from ideal → 1-month reduction in USC lifetime
 Annual average decrease of 2 °C from ideal → 1% increase in fuel consumption
- Need for temperature sensors w/ high accuracy and high stability in harsh environment.

Challenges of existing contact temperature sensors

Sensing elements are some "solid" materials

- Limited temperature capability
- Degraded performance at high temperature: drift, reduced accuracy
 - Structural changes (e.g. crystallization)
 - Chemical changes (e.g. oxidation)
- Cross-sensitivity to other parameters (e.g. strain, bending)
- Self-heating; electromagnetic interference

Principle of Operation

- Optical property (refractive index) of "Gas" is a function of temperature
- Inherently stable at high temperature (gas does not degrade at high temperatures)
 - No interactions among gas molecules
 - No chemical reactions
- Optical properties do NOT drift → good stability; high accuracy
- Signal cannot be affected by structural changes of the enclosure of the gas.

Fiber-optic temperature sensor – "gas" as the sensing element

- Refractive index of gas, n, is function of absolute temperature (T) & pressure (P):
- λ change linearly with P
- P can be varied and controlled to obtain slope k
- *T* can be deduced using $T = \alpha \lambda / k$.
- α: Inherent stable; k: insensitive to FP cavity length variation (0.1% change in k for 1000 με).

 $n - 1 = \alpha P / T \quad (\ll 1)$ $\lambda = \frac{2L}{m} \left(\frac{\alpha}{T} P + 1\right)$ $k \triangleq \frac{\partial \lambda}{\partial P} = \frac{2\alpha L}{mT}.$ $T = \alpha \lambda / k.$

Preliminary result – Experimental setup

Preliminary result – Experimental setup

Preliminary result – Spectral shift vs. P at two different T levels

Pressure increases from 0 to 1500 psi in a step size of 300 psi

Wavelength (nm)

Preliminary result – Spectral shift vs. Pressure

Pressure (psi)

Preliminary result – Strain-insensitive measurement

250

500

- Measurement at room temperature;
- Strains of different levels (0 3600 με) applied by adjusting weights
- T measurement variation < 1 °C (FBG Sensor: 3600 με ~ 360 °C)

750

1000

1250

1500

Research work - System configuration

- Pressurization through a ceramic tube rather than through the small holes in the fiber → faster speed
- Venting hole on sensor head to avoid pressure-induced structural changes
- All-silica photonic crystal fiber to increase the temperature range to > 1200 °C (temperature of regular fiber is limited by dopant diffusion)

Research work – Pressurization system

- Dry air for consistent air compositions
- Miniaturized air pump and pressure controller
- High-accuracy pressure sensor (0.01%)

Research work – Sensor Interrogation

Research work – Sensor Characterization and Test

- Using metal fixed point cells to generate temperature references (accuracy: ~ 0.001 °C)
 - Tin 231.928 °C
 - Aluminum 660.323 °C
 - Silver 961.78 °C
 - Copper 1084.62 °C
- Resolution
- Accuracy
- Long-term drift
- Compare with thermocouples (R, S, or B type)
- Test results will provide feedback for sensor system optimization.

Summary

- High-accuracy, high-stability temperature sensor is critical for the safe and efficient operation of advanced coal-fired energy systems
- Using "gas" as the sensing element eliminates many drawbacks inherent to sensors using solid materials as the sensing elements
- Preliminary study has shown promising results
- To make this technology a viable solution in coal-fired energy system
 - Portable pressure system with automatic and precise control
 - Accurate sensor interrogation methods
 - Characterization and testing at high temperature levels
 - Other issues: sensor packaging; effects of air composition variations; effect of maximum pressure on measurement accuracy and resolution